Can anyone please answer this question? I can't get it..
Answers
Step-by-step explanation:
Given:−
Radii of two circles = 48cm and 13cm
\underline{\sf \ \ \ \star\ To\ Find :- \ \ \ \ \ \ \ } ⋆ To Find:−
We have to find out the Area of that circle whose circumference is equal to the Difference of the circumference of given two circles
\underline{\sf \ \ \ \star\ Solution :- \ \ \ \ \ \ \ } ⋆ Solution:−
Find the Circumference of the two circles
\underline{\boxed{\sf{\dag\ \ Circumference\ of \ circle = 2 \pi r}}}† Circumference of circle=2πr
Find the circumference of circle whose radius is 48cm
\begin{gathered}\dashrightarrow\sf Circumference\ of \ Circle_1= 2\times \dfrac{22}{7}\times 48\\ \\ \\ \dashrightarrow\sf Circumference \ of \ Circle_1={\underline{\boxed{\purple{\sf \dfrac{2112}{7}}}}}\end{gathered}⇢Circumference of Circle1=2×722×48⇢Circumference of Circle1=72112
Find the circumference of circle whose radius is 13cm
\begin{gathered}\dashrightarrow\sf Circumference\ of \ Circle_2= 2\times \dfrac{22}{7}\times 13\\ \\ \\ \dashrightarrow\sf Circumference \ of \ Circle_2={\underline{\boxed{\red{\sf \dfrac{572}{7}}}}}\end{gathered}⇢Circumference of Circle2=2×722×13⇢Circumference of Circle2=7572
Now find out the circumference of new circle which is equal to the Difference of \sf C_1 - C_2C1−C2
\underline{\sf{\maltese \ Circumference\ of \ new \ circle= C_1- C_2}}✠ Circumference of new circle=C1−C2
\begin{gathered}:\implies\sf Circumference\ of \ new \ circle = \bigg[ \dfrac{2112}{7}\bigg]- \bigg[\dfrac{572}{7}\bigg]\\ \\ \\ :\implies\sf C.\ of \ new \ circle = \cancel{\dfrac{1540}{7}}\\ \\ \\ :\implies\sf C.\ of \ new \ circle = {\underline{\boxed{\purple{\sf 220cm}}}}\end{gathered}:⟹Circumference of new circle=[72112]−[7572]:⟹C. of new circle=71540:⟹C. of new circle=220cm
$$\rule{300}{1.5}$$
Now we have to find the Area of new circle
Find out the radius !
$$\begin{gathered}\dashrightarrow\sf Circumference\ of \ circle= 2 \pi r\\ \\ \\ \dashrightarrow\sf 220= 2\times \dfrac{22}{7}\times r \\ \\ \\\dashrightarrow\sf r= \dfrac{\cancel{220}\times 7}{\cancel{44}}\\ \\ \\ \dashrightarrow\sf r= 5\times 7\\ \\ \\\dashrightarrow{\underline{\boxed{\sf{\blue{ radius= 35cm}}}}}\end{gathered}$$
Now find the Area of new circle
$$\underline{\boxed{\sf{\ Area\ of \ circle= \pi r^2 }}}$$
$$\begin{gathered}\dashrightarrow\sf Area \ of \ circle= \dfrac{22}{\cancel{7}}\times \cancel{35}\times 35\\ \\ \\ \dashrightarrow\sf Area\ of \ circle = 22\times 5\times 35\\ \\ \\ \dashrightarrow\sf Area_{circle}= {\underline{\boxed{\sf{\purple{3850 cm^2}}}}}\end{gathered}$$
$$\underline{\underline{\textsf{ Area \ of \ new \ circle = {\textbf{3850sq.cm}}}}}$$
$$\rule{300}{1}$$
$$\underline{\sf{\bigstar\ Alternate\ Method \ To \ find \ Radius \ of \ new \ circle }}$$
$$\begin{gathered}\dashrightarrow\sf C_1- C_2= C_{new}\\ \\ \\ \dashrightarrow\sf 2\pi r_1-2\pi r_2= 2\pi r\\ \\ \\ \dashrightarrow\sf 2\pi(r_1-r_2)= 2\pi r\\ \\ \\ \dashrightarrow\sf \cancel{2 \pi}(48-13)= \cancel{2 \pi } r\ \ \ \ \Big[\therefore\ r_1=48\ ; \ r_2= 13 \Big]\\ \\ \\ \dashrightarrow{\boxed{\sf 35= r}}\end{gathered}$$
★By using this You can easily find the area of the new circle !
i hope it will help you....