Math, asked by ashna53, 6 days ago

Can anyone please answer this
 \frac{  {2}^{2001}  +  {2}^{1999} }   { {2}^{2000} -  {2}^{1998}  }

Answers

Answered by anilsaikia
0

Answer:

answer is 10/3

Step-by-step explanation:

hope it helps

Mark me BRAINLIEST

Attachments:
Answered by talpadadilip417
0

Step-by-step explanation:

 \\  \tt \implies\frac{ {2}^{2001} + {2}^{1999} } { {2}^{2000} - {2}^{1998} }

Taking common,

\[ \begin{array}{l} \tt =\dfrac{2^{1999}\left(2^{2}+2^{0}\right)}{2^{1998}\left(2^{2}-2^{0}\right)} \\  \\  \tt=\dfrac{2^{1999}(4+1)}{2^{1998}(4-1)} \\  \\ =\dfrac{2^{1999}(5)}{2^{1998}(3)} \\  \\ =\dfrac{5}{3}  \cdot 2^{1999-1998} \quad\left[a^{b} \div a^{c}=a^{b-c}\right] \\ \\  \tt =\dfrac{5}{3} \cdot 2^{1} \\ \\  \tt =\dfrac{10}{3} \end{array} \]

Similar questions