Physics, asked by ssarah1233, 10 months ago

Can anyone please do the 29th one please

Attachments:

Answers

Answered by PraaneshNair
1

Answer:

Case 1

Given that,

v = 10m/s

u = 0

t = 25s

By 1st equation of motion,

v = u + at

Substituting the values of v , u and t,

10 = 0 + 25a

25a = 10

a = 10/25

a = 0.4m/s²

_________________________________

Case 2

Given that,

v = 0

u = 10m/s

t = 50s

By 1st equation of motion,

v = u + at

Substituting the values of v, u and t,

0 = 10 + 50a

50a = -10

a = -0.2m/s²

Hope it helps

please mark as brainliest

Answered by amankumaraman11
1

 \rm{ \huge Given :(  \bf \: Case_{ \small1} )}

  • u = 0 m/s
  • v = 10 m/s
  • t = 25 second

Therefore,

 \huge \sf{a =  \frac{v - u}{t} } \\  \\  \boxed{ \frak{=  >  \frac{(10 - 0)}{25}  =  \frac{10}{25}  =  \purple{0.4}  \: {ms}^{ - 2} }}

Now,

 \rm \huge Given :({ \bf{  Case_{ \small2}})}

  • u = 10 m/s
  • v = 0 m/s
  • t = 50 second

 \huge \sf{a =  \frac{v - u}{t}  } \\  \\  \tt{ =  >  \frac{0 - 10}{50}  =  \frac{ - 1 \cancel0}{ 5  \cancel0}  =  \frac{ - 1}{5} \:  \:  {ms}^{ - 2}  } \\  \\  \boxed{\frak{ =  >  \purple{ - 0.2} \: \:   {ms}^{ - 2} }}

Then,

 \sf\huge{ S_{1}  = ut +  \frac{1}{2}  {at}^{2} } \\  \\  =  > 0(25) +  \frac{1}{2}  \times 0.4 \times  {(25)}^{2}  \\  \\   =  > 0 +  \frac{ \cancel{0.4 }\times 25 \times 25}{ \cancel2}  \\  \\  =  > 0.2 \times 625 =   \frak{\red{125} \: m}

And,

 \huge \sf{S_{2} = ut +  \frac{1}{2}  {at}^{2} } \\  \\  =  > 10(50) +  \frac{1}{2}  \times ( - 0.2) \times  {(50)}^{2}  \\  \\  =  > 500 +  \frac{  \cancel{-0.2} \times 2500}{ \cancel2}  \\  \\  =  > 500 + ( - 0.1 \times 2500) \\  =  > 500 + ( - 250) \\  =  > 500 - 250 = \frak{  \red{250} \: m}

Hence,

 \rm{Total  \: distance = (250 + 125) \: m} \\  \\ \boxed{\huge  =  >  \:  \:  \:  \:  \:   \frak{\red{375} \: m}}

Similar questions