Physics, asked by masattarsunnyoyp7ov, 10 months ago

can anyone please explain me how a.w.cos.w.t came????

(SHM) ossiclation chapter of class 11​

Attachments:

Answers

Answered by Sharad001
183

Question :-

How did this came ?

 \to \bf if \:  \sf \:  x =  \: a \sin( \omega \: t) \\  \\  \to \sf \: v = a \omega \cos( \omega \: t)

Explanation :-

 \bf \: here \\  \\  \to \sf v = velocity \:  \\  \to \sf \omega = angular \: frequency \\  \to \sf \: x = displacement \\ \to\sf  a = amplitude \:

We have ,

 \to \sf x =  \: a \sin ( \omega \: t) \\  \\  \sf \: differentiate \: with \: respect \: to \: t \:  \\  \\  \to \sf \frac{dx}{dt}  =  \dfrac{d}{dt} a \sin ( \omega \: t) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \sf \frac{d}{dx}  \sin x =   \cos x} \\  \therefore \\  \\  \to \sf \frac{dx}{dt}  = a  \cos( \omega \: t) \frac{d}{dt}  \omega t \\  \:  \\ \sf \red{ here \:  \: a \: and \: } \green{ \omega \: are \: constant \: } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \boxed{  \sf \because \frac{d}{dt} x = 1} \\  \therefore \\

 \to \sf \: \frac{dx}{dt}  = a \:  \omega \: t  \cos ( \omega  \: t) \\  \\ \boxed{   \because \sf  \frac{dx}{dt}  = v \: } \\  \\  \to \red{ \boxed{ \sf  \green{v = a \:  \omega \cos( \omega \: t)}}}

Similar questions