Math, asked by Haquemorziul69, 4 days ago

can anyone please solve this, I'm ready to give everything very difficult sum​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-4}}

Given that, In triangle ABC, a = 13 cm, b = 14 cm and c = 15 cm

So, Semi-perimeter (s) of a triangle is given by

\boxed{\rm{  \: \: s \:  =  \:  \frac{a + b + c}{2} \:  \: }} \\

So, on substituting the values, we get

\rm \: s \:  =  \:  \frac{13 + 14 + 15}{2}  \\

\rm \: s \:  =  \:  \frac{42}{2}  \\

\rm\implies \:s \:  =  \: 21 \: cm \\

Now, we know that

\rm \: sin \dfrac{A}{2} \:  =  \:  \sqrt{ \dfrac{(s - b)(s - c)}{bc} }  \\

So, on substituting the values, we get

\rm \: sin \dfrac{A}{2} \:  =  \:  \sqrt{ \dfrac{(21 - 14)(21 - 15)}{14 \times 15} }  \\

\rm \: sin \dfrac{A}{2} \:  =  \:  \sqrt{ \dfrac{7 \times 6}{14 \times 15} }  \\

\rm \: sin \dfrac{A}{2} \:  =  \:  \sqrt{ \dfrac{1}{5} }  \\

\rm\implies \:\rm \: sin \dfrac{A}{2} \:  =  \:  \sqrt{ \dfrac{1}{5} }  \\

or

\rm\implies \:\rm \: sin \dfrac{A}{2} \:  =  \:   \dfrac{ \sqrt{5} }{5}  \\

\large\underline{\sf{Solution-5}}

Consider,

\rm \: \dfrac{cosA}{a}  + \dfrac{cosB}{b}  + \dfrac{cosC}{c}  \\

We know, Cosine Law

\boxed{\rm{  \:cosA =  \frac{ {b}^{2}  +  {c}^{2}  -  {a}^{2} }{2bc} \:  \: }} \\

\boxed{\rm{  \:cosB =  \frac{ {c}^{2}  +  {a}^{2}  -  {b}^{2} }{2ac} \:  \: }} \\

\boxed{\rm{  \:cosC =  \frac{ {a}^{2}  +  {b}^{2}  -  {c}^{2} }{2ab} \:  \: }} \\

So, on substituting these Identities, in given expression

\rm \:  =  \: \dfrac{ {a}^{2}  +  {b}^{2}  -  {c}^{2} }{2abc} + \dfrac{ {c}^{2}  +  {a}^{2}  -  {b}^{2} }{2abc} + \dfrac{ {a}^{2}  +  {b}^{2}  -  {c}^{2} }{2abc} \\

\rm \:  =  \: \dfrac{ {a}^{2}  +  {b}^{2}  -  {c}^{2} +  {c}^{2} +  {a}^{2} -  {b}^{2}  +  {a}^{2}  +  {b}^{2}  -  {c}^{2} }{2abc}  \\

\rm \:  =  \: \dfrac{ {a}^{2}+{b}^{2} +  {c}^{2}}{2abc}  \\

Hence,

\rm\implies \:\frac{cosA}{a}  +  \frac{cosB}{b} +  \frac{cosC}{c}  =  \: \dfrac{ {a}^{2}+{b}^{2} +  {c}^{2}}{2abc}  \\

\rule{190pt}{2pt}

Additional Information :-

\rm \: sin \dfrac{B}{2} \:  =  \:  \sqrt{ \dfrac{(s - a)(s - c)}{ac} }  \\

\rm \: sin \dfrac{C}{2} \:  =  \:  \sqrt{ \dfrac{(s - a)(s - b)}{ab} }  \\

\rm \: cos\dfrac{C}{2} \:  =  \:  \sqrt{ \dfrac{s(s - c)}{ab} }  \\

\rm \: cos\dfrac{B}{2} \:  =  \:  \sqrt{ \dfrac{s(s - b)}{ac} }  \\

\rm \: cos\dfrac{A}{2} \:  =  \:  \sqrt{ \dfrac{s(s - a)}{ab} }  \\

Similar questions