Math, asked by Anonymous, 7 hours ago

can anyone please solve this Q with explanation please!! ​

Attachments:

Answers

Answered by Itzheartcracer
7

{\huge{\boxed{\underline{\underline{\bf Given:-}}}}}

\sf \alpha \;\&\;\beta \; are\;zeroes\;of \;f(x)=x^2-x-4

{\huge{\boxed{\underline{\underline{\bf To\;Find:-}}}}}

{\boxed{\sf \dfrac{1}{\alpha}+\dfrac{1}{\beta}-\alpha\beta}}

{\huge{\boxed{\underline{\underline{\bf Solution:-}}}}}

\pink\sf{We\;know\;that}

{\boxed{\sf \alpha +\beta =\dfrac{-(b)}{a}}}

\sf On\;comparing\;with\;ax^2+bx+c\; we \;get

\sf a=1\;\&\; b=-1\;\&\;c=-4

\sf\implies \alpha +\beta =\dfrac{-(-1)}{1}

\sf\implies \alpha +\beta =\dfrac{1}{1}

\sf\implies \alpha +\beta =1

{\boxed{\sf \alpha \beta =\dfrac{c}{a}}}

\sf\implies \alpha \beta =\dfrac{-4}{1}

\sf\implies \alpha \beta =-4

\sf Now,\;Finding

{\boxed{\sf \dfrac{1}{\alpha}+\dfrac{1}{\beta}-\alpha\beta}}

\sf\dfrac{\alpha +\beta }{\alpha \beta }-\alpha \beta

\sf \implies\dfrac{1}{-4}-(-4)

\sf \implies\dfrac{-1}{4}+4

\sf\implies \dfrac{-1+16}{4}

\sf\implies\dfrac{15}4

Answered by Anonymous
2

Answer:

Step-by-step explanation:

2x-1 = 1/α + 1/β - αβ. = 4.

Similar questions