Math, asked by Anonymous, 7 months ago

Can anyone plz answer this fast .​

Attachments:

Answers

Answered by EnchantedGirl
17

\underline{\underline{\tt{\pink{To \: Prove:-}}}}

\\

• The area of equilateral triangle described one side of a square is equal to half area of the equilateral triangle described one of its diagonals.

\\

\underline{\underline{\tt{\orange{Proof:-}}}}

\\

➝ Let side of square be a .

\\

From the figure ,

\\

In ∆ABD :

\\

\hookrightarrow \tt BD =  \sqrt{ a^2 + a^2 } \\  \\  \\  =   \tt\sqrt{2 {a}^{2} }  \\  \\  \\  \tt \:  =  \sqrt{2} a. \\  \\

\\

Hence,

\\

◉ Diagonal = a√2

\\

Now,

\\

\tt \: \hookrightarrow  ar. \triangle \: APB = \sqrt{3}/4 \times a^2 ....(1)

\\

 \tt \hookrightarrow  Ar.\triangle \: BQD = \frac{ \sqrt{3} }{4}  \times (a \sqrt{2} ) {}^{2}  \\  \\  \\  \tt \:  =  \frac{ \sqrt{3} }{4}  \times 2 {a}^{2}  \\  \\  \\  \tt \:  =  \frac{ \sqrt{3} }{2}  {a}^{2} ....(2) \\  \\

\\

Therefore,

\\

From eqn (1)&(2) we get :

\\

\bigstar \boxed{\pink{\tt{Area \: of \: \triangle APB = 1/2 \times  Area\:  of\:  \triangle BQD }}}

\\

Hence proved !

\\

_______________________________________

Attachments:
Similar questions