can anyone prove this for me plz?
Answers
Answer:
jahakshksyeksskn-mshskeje
4(cos^3 10 + sin^3 20) = 3(cos10 + sin20)
Lets use cubes formula: a^3 + b^3 = (a+b)(a^2 - ab + b^2)
4(cos10 + sin20)(cos^2 10 - cos10sin20 + sin^2 20) = 3(cos10 + sin20)
We can now divide both sides from: (cos10 + sin20)
4(cos^2 10 - cos10sin20 + sin^2 20) = 3
Lets use reduction for: cos^2 10 = sin^2 80
Using multiplication formula for [-cos10sin20]
-cos10sin20 = -1/2 (sin10 + sin30) = -1/2(sin10 + 1/2) = -1/2 sin10 - 1/4
It now looks like this:
4(sin^2 80 + sin^2 20 - 1/2 sin10 - 1/4) = 3
sin^2 80 + sin^2 20 - 1/2 sin10 - 1/4 = 3/4
sin^2 80 + sin^2 20 - 1/2 sin10 = 1
Lets remember angle reduction formula:
sin^2 a = (1-cos2a)/2
For: sin^2 80 = (1-cos160)/2
For: sin^2 20 = (1-cos40)/2
(1-cos160)/2 + (1-cos40)/2 - 1/2 sin10 = 1
Multiply both sides from 2:
1 - cos 160 + 1 - cos40 - sin10 = 2
-cos160 - cos40 - sin10 = 0 (multiply by -1)
cos160 + cos40 + sin10 = 0
Cos sum formula: cosa + cosb = 2cos(a+b)/2 * cos(a-b)/2
2cos100cos60 + sin10 = 0
cos100 + sin10 = 0
cos(90+10) + sin10=0
-sin10 + sin10 = 0
0 = 0
since: cos100 is in the 2nd quarter where it's negative.