Math, asked by artigupta4851, 2 days ago

can anyone provide me the answer ​ of xi

Attachments:

Answers

Answered by anindyaadhikari13
8

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto (3 - 4i)(x + iy) = 1 + 0i

 \rm: \longmapsto 3(x + iy)  - 4i(x + iy)= 1 + 0i

 \rm: \longmapsto 3x + 3iy - 4ix +4y= 1 + 0i

On rearranging the terms, we get:

 \rm: \longmapsto (3x  + 4y)+ (3y - 4x)i =  1 + 0i

Comparing both sides, we get:

 \rm: \longmapsto 3x  + 4y = 1 - (i)

 \rm: \longmapsto 3y - 4x = 0 - (ii)

Multiplying (i) by 4, we get:

 \rm: \longmapsto 12x  + 16y = 4- (iii)

Multiplying (ii) by 3, we get:

 \rm: \longmapsto 9y - 12x = 0 - (iv)

Adding equations (iii) and (iv), we get:

 \rm: \longmapsto25y = 4

 \rm: \longmapsto y =\dfrac{4}{25}

From (ii), we get:

 \rm: \longmapsto 3y - 4x = 0

 \rm: \longmapsto 3y  = 4x

 \rm: \longmapsto x =  \dfrac{3}{4} y

 \rm: \longmapsto x =  \dfrac{3}{4}  \times  \dfrac{4}{25}

 \rm: \longmapsto x =  \dfrac{3}{25}

Therefore:

 \rm: \longmapsto (x,y)= \bigg(  \dfrac{3}{25}, \dfrac{4}{25} \bigg)

★ Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

\rm1.\  i^{4n} = 1

\rm2. \ i^{4n+1} = i

\rm3.\  i^{4n+2} = -1

\rm4.\ i^{4n+3} = -i


anindyaadhikari13: Thanks for the Brainliest :)
Similar questions