Math, asked by Anonymous, 3 months ago

Can anyone provide me the right answer :-

 {\frac{tan^2 2x - tan^2x }{1-tan^2 2x\; tan^2x }= tan3x \; tanx}

Answers

Answered by Anonymous
118

Here's we are asked to prove :-

  • \sf\purple{{\dfrac{tan^2 2x - tan^2x }{1-tan^2 2x\; tan^2x }= tan3x \; tanx}}

⠀ ━━━━━━━━━━━━━━━━━━━━━⠀⠀

Formula's:-

\sf\:a^2-b^2=(a+b)(a-b)\\\\

\sf{tan(a+b)=\dfrac{tan \;a+tan\;b}{1-tan \;a\;tan \;b}\;\;}\\\\

\sf{tan(a-b)=\dfrac{tan\;a-tan\;b}{1+tan\;a\;tan\;b}}\\\\

Taking LHS

\sf\red{ :\implies \dfrac{tan^2 2x - tan^2x}{1-tan^22x \; tan^2x}}\\\\

\sf :\implies\dfrac{(tan2x+tanx) (tan2x-tanx)}{(1-tan2x\;tanx)(1+tan2x\;tanx)}\\\\

\sf :\implies \left(\dfrac{tan2x+tanx}{1-tan2x\;tanx}\right) \left( \dfrac{tan2x-tanx}{1+tan2x\;tanx}\right)\\\\

\sf :\implies tan(2x+x) \; tan(2x-x)\\\\

\sf \red {:\implies tan3x \;tanx \; }= RHS\\\\

\:\:\:

  • (Proved..!!)
Answered by ItzZCripY
3

Step-by-step explanation:

see \: above \: u \: will \: get \: the \: right \: answer

\blue { {\frac{tan^2 2x - tan^2x }{1-tan^2 2x\; tan^2x }= tan3x \; tanx}}

Similar questions