Math, asked by vishnurajc2002, 9 months ago

Can anyone say how this happened​

Attachments:

Answers

Answered by shadowsabers03
2

Here,

\longrightarrow P'(x)=2y\,\dfrac{dy}{dx}

Differentiating with respect to x,

\longrightarrow P''(x)=\left(2y\,\dfrac{dy}{dx}\right)'

By product rule,

\longrightarrow P''(x)=(2y)'\,\dfrac{dy}{dx}+2y\left(\dfrac{dy}{dx}\right)'\quad\quad\dots(1)

Here,

  • (2y)'=2y'=2\cdot\dfrac{dy}{dx}

  • \left(\dfrac{dy}{dx}\right)'=\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)=\dfrac{d^2y}{dx^2}

Then (1) becomes,

\longrightarrow P''(x)=2\cdot\dfrac{dy}{dx}\cdot\dfrac{dy}{dx}+2y\,\dfrac{d^2y}{dx^2}

\longrightarrow P''(x)=2\left(\dfrac{dy}{dx}\right)^2+2y\,\dfrac{d^2y}{dx^2}

Or,

\longrightarrow P''(x)=2y\,\dfrac{d^2y}{dx^2}+2\left(\dfrac{dy}{dx}\right)^2

Similar questions