Math, asked by ssahasra621363, 4 months ago

can anyone say urgent pls write with steps . i will like your answer and mark u as a brainlist if wrong reported ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

Let the angles of the given triangle be

α,β,γ i.e., A = α, B = β, C = γ

Now, we have,

 \sum \frac{ \tan( \frac{ \alpha }{2} ) }{(s - b)(s - c)}  \\

 =  \frac{ \tan( \frac{ \alpha }{2} ) }{(s - b)(s - c)}  +  \frac{ \tan( \frac{  \beta  }{2} ) }{(s - c)(s - a)}  +\frac{ \tan( \frac{  \gamma  }{2} ) }{(s - a)(s -  b)} \\

We know that,

 \tan( \frac{ \alpha }{2} )  =  \sqrt{ \frac{(s - b)(s - c)}{s(s - a)} }  \\

 =  \frac{   \sqrt{ \frac{(s - b)(s - c)}{s(s - a)} }  }{(s - b)(s - c)} +    \frac{   \sqrt{ \frac{(s - c)(s - a)}{s(s - b)} }  }{(s - c)(s - a)} +   \frac{   \sqrt{ \frac{(s - a)(s - b)}{s(s - c)} }  }{(s - a)(s - b)} \\

 =  \frac{ \sqrt{(s - b)(s - c)} }{(s - b)(s - c) \sqrt{ s(s - a)}} + \frac{ \sqrt{(s - c)(s - a)} }{(s - c)(s - a) \sqrt{ s(s - b)}}   +\frac{ \sqrt{(s - a)(s - b)} }{(s - a)(s - b) \sqrt{ s(s - c)}} \\

 =  \frac{1}{ \sqrt{s(s - a)(s - b)(s - c)} }  + \frac{1}{ \sqrt{s(s - a)(s - b)(s - c)} }   + \frac{1}{ \sqrt{s(s - a)(s - b)(s - c)} }   \\

 =  \frac{3}{ \triangle}  \\

Similar questions