Math, asked by VivekR, 1 year ago

Can Anyone Solve it..... ✌..... ╮(╯▽╰)╭​

Attachments:

Answers

Answered by sujalrsuthar
3

Answer:

(sin@-2sin³@)/(2cos³@-cos@)

=sin@(1-2sin²@)/cos@(2cos²@-1)

=sin@(1-sin²@-sin²@)/cos@(cos²@+cos²@-1)

=tan@{(1-sin²@-sin²@)/(cos²@+cos²@-1)}

=tan@{(cos²@-sin²@)/(cos²@-sin²@)}

.....1-sin²@=cos²@&cos²@-1=-sin²@

=tan@(1)

=tan@

hence proved

please mark it BRAINLIEST

hope it helps you

Answered by Anonymous
5

Answer:

Let angle is

alpha( \alpha )

To prove :

 \frac{sin \alpha  - 2 {sin}^{3}  \alpha }{2 {cos}^{3} \alpha   -cos \alpha  }  = tan \alpha

Proof :

LHS

 = \frac{sin \alpha  - 2 {sin}^{3}  \alpha }{2 {cos}^{3} \alpha   -cos \alpha  } \\   \\  =  \frac{sin \alpha (1 - 2 {sin}^{2}  \alpha )}{cos \alpha (2 {cos}^{2} \alpha  - 1) }  \\  \\  = tan \alpha  \times  \frac{(1 -  {sin}^{2}  \alpha  -  {sin}^{2} \alpha ) }{( {cos}^{2} \alpha  +  {cos}^{2}   \alpha  - 1)}  \\  \\  = tan \alpha  \times  \frac{( {cos}^{2}  \alpha  -  {sin}^{2} \alpha ) }{( {cos}^{2}  \alpha  -  {sin}^{2} \alpha )}  \\  \\  = tan \alpha  \times 1 \\  \\  = tan \alpha

= RHS

Therefore, LHS = RHS

Hence Proved.

Mark as brainliest........❣❣

Similar questions