Math, asked by ntibotgaming7, 1 month ago

can anyone solve it pls​

Attachments:

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{The given expression is }\dfrac{\sqrt5 + 2}{\sqrt5 - 2} - \dfrac{\sqrt5 -2}{\sqrt5 + 2}

       \text{Simplifying...}

\implies \dfrac{(\sqrt5 + 2)^{2} - (\sqrt5 - 2)^{2}}{(\sqrt5 - 2)(\sqrt5 + 2)}

       \text{We know the following identities:}

       (a+b)^{2} = a^{2} + b^{2} + 2ab

       (a-b)^{2} = a^{2} + b^{2} - 2ab

       (a+b)(a-b) = a^{2} - b^{2}

\implies \dfrac{(\sqrt5)^{2} + (2)^{2} + 2(\sqrt5)(2)- [(\sqrt5)^{2} + (2)^{2}-2(\sqrt5)(2)]}{(\sqrt5)^{2} - (2)^{2}}

       \text{Simplifying...}

\implies \dfrac{5 + 4 + 4\sqrt5- (5 + 4 - \s4\sqrt5)}{5 - 4}

       \text{Simplifying...}

\implies \dfrac{5 + 4 + 4\sqrt5-5 - 4 + 4\sqrt5}{1}

       \text{Simplifying...}

\implies \boxed{8\sqrt5}

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest pls

Step-by-step explanation:

so \: here \:  \\  \frac{ \sqrt{5}  +  2 }{ \sqrt{5}  -  2 } \:  \:   -  \:  \frac{ \sqrt{5}  -  2 }{ \sqrt{5} +  2  }  \\  \\  =  \frac{ (\sqrt{5}  +  2 )( \sqrt{5}  +  2 ) - ( \sqrt{5}  -  2)( \sqrt{5}   -  2 )}{( \sqrt{5} +  2 )( \sqrt{5}  -  2 )}  \\  \\  =  \frac{( \sqrt{5}  +  2 ) {}^{2}   \: - ( \sqrt{5} -  2  ) {}^{2} }{( \sqrt{5}) {}^{2}   -  (2) {}^{2}  }  \\  \\  =  \frac{5 + 4 + 4 \sqrt{5}  - (5 + 4 - 4 \sqrt{5} )}{5 - 4}  \\  \\  =  \frac{9 + 4 \sqrt{5}  - 9 + 4 \sqrt{5} }{1}  \\  \\  = 4 \sqrt{5}  + 4 \sqrt{5}  \\  \\  = 8 \sqrt{5}

Similar questions