Can anyone solve qno.35 .plss it a urgent.i will mark him or her as brainlist
Attachments:
Answers
Answered by
2
Answer:
20√3(√3 + 1) m
Step-by-step explanation:
35.
Let BD be the building of height 20 m and AE be the momentum.
From figure, BD = CE = 20 m.
(i) In ΔBED:
tan 15° = BD/DE
⇒ (√3 - 1)/(1 + √3) = 20/DE
⇒ DE(√3 - 1) = 20(√3 + 1)
⇒ DE = 20(√3 + 1)/(√3 - 1)
⇒ DE = 20(√3 + 1)/(√3 - 1) * [(√3 + 1)/(√3 + 1)]
⇒ DE = 20(√3 + 1)²/2
⇒ DE = 20(3 + 1 + 2√3)/2
⇒ DE = 20(4 + 2√3)/2
⇒ DE = 10(4 + 2√3)
⇒ DE = 40 + 20√3
⇒ DE = 20(2 + √3)
Now,
⇒ DE = BC = 20(2 + √3)
(ii) In ΔABC:
tan 45° = AC/BC
⇒ 1 = AC/BC
⇒ 1 = AC/20(2 + √3)
⇒ AC = 20(2 + √3)
∴ Height of the monument(AE) = AC + CE
= 20(2 + √3) + 20
= 20(3 + √3)
= 20√3(√3 + 1) m.
∴ Height of the monument is: 20√3(√3 + 1) m.
Hope it helps!
Attachments:
Answered by
1
HELLO DEAR FRIEND,
YOUR ANSWER
⏬⏬⏬⏬⏬
⏬⏬⏬⏬⏬
20√3(√3 + 1 ) meter
EXPLANATION IN THE ATTACHMENT.
HOPE IT HELPS
YOUR ANSWER
⏬⏬⏬⏬⏬
⏬⏬⏬⏬⏬
20√3(√3 + 1 ) meter
EXPLANATION IN THE ATTACHMENT.
HOPE IT HELPS
Attachments:
Similar questions