Math, asked by tumpadhara, 7 months ago

can anyone solve this
2 sums​

Attachments:

Answers

Answered by ZAYN40
1

Solution:

 =  \frac{ \cot \gamma - 1}{2 -  { \sec}^{2}  \gamma }  \\   \\  =  \frac{ \cot \gamma  \:  - 1}{2 - ( { \tan}^{2}  \gamma   + 1)}   [\because \:  \sec {}^{2}  \gamma  = 1 +  { \tan }^{2} \gamma  </p><p>]\\  \\  =  \frac{ \cot \gamma  - 1}{2 - { \tan }^{2}  \gamma  - 1}  \\  \\  =  \frac{ \cot \gamma  - 1}{1 -  { \tan}^{2}  \gamma }  \\  \\  =  \frac{ \cot \gamma  - 1 }{(1 +  \tan \gamma )(1 -  \tan \gamma )}  \\  \\  =  \frac{ \cot \gamma  - 1}{(1 +  \tan \gamma )(1 -   \frac{1}{ \cot \gamma } )}  \\  \\  =  \frac{  \cancel{\cot \gamma  - 1}}{(1 +  \tan \gamma ) \frac{ \cancel{(cot \gamma  - 1)}}{cot \gamma }}  \\  \\  =  \frac{ \cot  \gamma }{1 +  \tan \gamma }

Hence, [L.H.S] = R.H.S [proved]

Similar questions