Physics, asked by priyanshu12131, 9 months ago

Can anyone solve this

Attachments:

Answers

Answered by daminidk
1

Explanation:

pls mark as brainliest

Attachments:
Answered by TheValkyrie
2

Answer:

\bigstar{\bold{\dfrac{d}{dt} (x)=3t^{2}+8t}}

Explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • x = t³ + 4t² + 5

\Large{\underline{\underline{\bf{To\:Find:}}}}

\dfrac{d}{dt} (x)

\Large{\underline{\underline{\bf{Identities\:Used:}}}}

\dfrac{d}{dx} (x^{n} )=nx^{n-1}

\dfrac{d}{dx} (x)=1

\dfrac{d}{dx} (constant)=0

\Large{\underline{\underline{\bf{Solution:}}}}

\dfrac{d}{dt} (x) = \dfrac{d}{dt} (t^{3} +4t^{2} +5)

→ Distributing the differential operator to all terms

\dfrac{d}{dt} (t^{3} )+\dfrac{d}{dt}(4t^{2} )+\dfrac{d}{dt} (5)

→ Applying the identities, we get

 \dfrac{d}{dt} (x)=3t^{2} +4\times 2t +0

           =3t^{2} +8t

\boxed{\bold{\dfrac{d}{dt} (x)=3t^{2} +8t}}

\Large{\underline{\underline{\bf{More\:Identities:}}}}

\dfrac{d}{dx} (\sqrt{x} )=\dfrac{1}{2\sqrt{x} }

\dfrac{d}{dx} (\dfrac{1}{x^{n} } )=\dfrac{-n}{x^{n+1} }

Similar questions