can anyone solve this??
Answers
Step-by-step explanation:
Solution :-
Given that cos x + cos² x = 1
=> cos x = 1 - cos² x
=> cos x = sin² x
since, sin² A + cos² A = 1
Therefore, sin² x = cos x
On squaring both sides
=> ( sin² x )² = ( cos x )²
=> sin⁴ x = cos² x
=> sin⁴ x = 1-sin² x
=> sin⁴ x + sin² x = 1 ---------------(1)
Since , sin² A + cos² A = 1
The value of sin¹²x+3 sin¹⁰x+3 sin⁸x+sin⁶x
=> sin¹²x+sin¹⁰x+2 sin¹⁰x+2sin⁸x+sin⁸x +sin⁶x
=>(sin¹²x+sin¹⁰x)+(2 sin¹⁰x+2 sin⁸x)+(sin⁸x+sin⁶x )
=> sin⁸x( sin⁴x+sin²x)+2sin⁶x(sin⁴x+sin²x)+sin⁴x(sin⁴x+sin²x)
=> sin⁸x(1)+2sin⁶x(1)+sin⁴x(1)
Since ,sin⁴ x + sin² x = 1 from (1)
=> sin⁸x+2sin⁶x+sin⁴x
=> sin⁸x+sin⁶x+sin⁶x+sin⁴x
=> ( sin⁸x+sin⁶x)+(sin⁶x+sin⁴x)
=> sin⁴x(sin⁴x+sin²x)+sin²x(sin⁴x+sin²x)
=> sin⁴x(1)+sin²x(1)
Since, sin⁴ x + sin² x = 1 from (1)
=> sin⁴x + sin² x
=> 1
since , sin⁴ x + sin² x = 1 from (1)
The required value = 1
Answer :-
The value of sin¹²x+3sin¹⁰x+3sin⁸x+sin⁶x is 1
Used formulae:-
→ sin² A + cos² A = 1
Step-by-step explanation:
Solution:
Given,
cos x + cos²x = 1
cos x = 1 – cos²x
cos x = sin²x….(i)
Let us take the given equation again.
cos x + cos²x = 1
Cubing on both sides,
(cos x + cos²x)³ = (1)³
cos³x + + 3(cos x)(cos²x)(cos x + cos²x) = 1
cos³x + + 3 cos⁴x + 3 = 1….(ii)
Substituting (i) in (ii),
(sin²x)³ + + 3(sin²x)⁴ + = 1
+ sin¹²x + 3 + 3 = 1
sin¹²x + 3 + 3 + – 1 = 0