CAN ANYONE SOLVE THIS BY RHS
Answers
Step-by-step explanation:
Solution:-
We know that
Sin² θ+ Cos² θ = 1
=> Cos² θ = 1 - Sin² θ
=> Cos θ × Cos θ = (1+Sin θ)(1-Sin θ)
=> Cos θ/(1-Sin θ) = (1+Sin θ)/Cos θ
By the property of equal ratio
=> Cos θ/(1-Sin θ) = (1+Sin θ)/Cos θ =
(1+Sin θ-Cos θ) /( Cos θ- 1+ Sin θ)
=> Cosθ/(1-Sinθ) = (1+Sinθ-Cosθ)/(Cosθ- 1+Sinθ)
=> Cosθ/(1-Sinθ) = (Sinθ-Cosθ+1)/(Cosθ+Sinθ-1)
On dividing LHS by Cos θ
=> (Cos θ/Cos θ)/(1- Sin θ)/Cos θ) =
(Sinθ-Cosθ+1)/(Cosθ+Sinθ-1)
=> 1/(1- Sin θ)/Cos θ) = (Sinθ-Cosθ+1)/(Cosθ+Sinθ-1)
=> 1/(1/Cos θ)-(Sin θ/ Cos θ) =
(Sinθ-Cosθ+1)/(Cosθ+Sinθ-1)
=> 1/(Secθ-Tanθ) = (Sinθ-Cosθ+1)/(Cosθ+Sinθ-1)
=> RHS = LHS
Used formulae:-
- Tan A = Sin A / Cos A
- Sec A = 1/ Cos A
- Sin² A + Cos² A = 1
- Cos² A = 1 - Sin² A
- If a/b = c/d then a/b = c/d
= (a+c)/(b+d)
Step-by-step explanation:
Solution-
L.H.S = (sin θ - cos θ + 1)/(sin θ + cos θ - 1)
= (tan θ - 1 + sec θ)/(tan θ + 1 - sec θ)
= [(tan θ + sec θ) - 1]/[(tan θ - sec θ) + 1]
= [{(tan θ + sec θ) - 1} (tan θ - sec θ)]/[{(tan θ - sec θ) + 1}( tan θ - sec θ)]
= [(tan² θ - sec² θ) - (tan θ - sec θ)]/[(tan θ - sec θ + 1)(tan θ - sec θ]
= -1 - tan θ + sec θ/[(tan θ - sec θ + 1)(tan θ - sec θ)]
= -1/(tan θ - sec θ)
= 1/(sec θ - tan θ)
= R.H.S
Remember:- sec² θ = 1 + tan² θ.