Math, asked by ishita222, 10 months ago

can anyone solve this for me​

Attachments:

Answers

Answered by rishu6845
18

Answer:

\boxed{\boxed{\huge{\pink{x = 5}}}}

Step-by-step explanation:

\bold{\underline{\red{Given}}}\longrightarrow \\  log_{4}(8)  +  log_{4}(x + 3)  -  log_{4}(x - 1)  = 2

\bold{\underline{\blue{To \: find}}} \\ value \: of \: x

\bold{\underline{\green{Concept \: used}}}\longrightarrow \\ logm + logn = logmn \\ logm - logn = log \dfrac{m}{n}  \\  log_{m}(x)  = n \:  =  > x =  {m}^{n}

\bold{\underline{\pink{Solution}}}\longrightarrow \\  log_{4}(8)  +  log_{4}(x + 3)  -  log_{4}(x - 1)  = 2

 =  >  log_{4}(8(x + 3) ) \:  \:  -  log_{4}(x - 1)  = 2 \\  =  >  log_{4}(8x + 24)  -  log_{4}(x - 1)  = 2 \\  =  >  log_{4}( \dfrac{8x + 24}{x - 1} )  = 2 \\  =  > ( \dfrac{8x + 24}{x - 1} ) =  {4}^{2}  \\  =  > 8x + 24 = 16 \: (x - 1) \\  =  > 8x  + 24 = 16x - 16 \\  =  > 16 + 24 = 16x - 8x \\  =  > 8x = 40 \\  =  > x =  \dfrac{40}{8}  \\  =  > x = 5

Similar questions