Can anyone solve this plzz...
find the value of k given that (x+3 ) is a factor of x^3 +4x +kv-24
Answers
Answered by
26
AnswEr:
the value of k is -21.
ExplanaTion:
Given that, (x+3) is a factor of Polynomial p(x) = x³ + 4x + kx - 24
Put x + 3 = 0
x = -3
Substitute x = -3 in polynomial p(x).
(-3)³ + 4(-3) + k(-3) - 24
-27 - 12 - 3k - 24
-3k - 63
Equate it to zero.
-3k - 63 = 0
-3k = 63
k =
k = -21
Hence, the value of k is -21.
Answered by
28
Correct Question: Find the value of k given that (x + 3) is a factor of x³ + 4x + kx - 24
GIVEN:
Polynomial = x³ + 4x + kx - 24
Factor of polynomial = x + 3
TO FIND:
Value of k
SOLUTION:
If x + 3 is the factor of p(x) = x³ + 4x + kx - 24 then the value of p(-3) = 0
=> p(-3) = x³ + 4x + kx - 24
=> (-3)³ + 4(-3) + k(-3) - 24 = 0
=> -27 - 12 - 3k - 24 = 0
=> -63 - 3k = 0
=> -3k = 63
=> k = 63/-3
=> k = -21
Therefore, the value of k is -21.
Similar questions