can anyone solve this question
3 and 5
Attachments:
![](https://hi-static.z-dn.net/files/d4b/11b481cc1bb52bd66ec13b5b0fa31b74.jpg)
Answers
Answered by
9
Let's do it.
3)
(I'm gonna take theta = alpha just for the sake of easy typing through Android)
![x = a \cos( \alpha ) x = a \cos( \alpha )](https://tex.z-dn.net/?f=x+%3D+a+%5Ccos%28+%5Calpha+%29+)
![y = b \cot( \alpha ) y = b \cot( \alpha )](https://tex.z-dn.net/?f=y+%3D+b+%5Ccot%28+%5Calpha+%29+)
I'm just gonna substitute the values I have so by using LHS,
![\frac{ {a}^{2} }{ {a}^{2} \cos {}^{2} ( \alpha ) } - \frac{ {b}^{2} }{ {b}^{2} { \cot }^{2} ( \alpha )} \\ \\ = \frac{1}{ { \cos }^{2} \alpha } - \frac{1}{ { \cot }^{2} \alpha } \\ = \frac{1 }{ { \cos}^{2} \alpha } - \frac{ \sin {}^{2} \alpha }{ { \cos}^{2} \alpha } \\ = \frac{1 - { \sin}^{2} \alpha }{ { \cos }^{2} \alpha } \\ = \frac{{ \cos }^{2} \alpha}{{ \cos }^{2} \alpha} \\ = 1 \frac{ {a}^{2} }{ {a}^{2} \cos {}^{2} ( \alpha ) } - \frac{ {b}^{2} }{ {b}^{2} { \cot }^{2} ( \alpha )} \\ \\ = \frac{1}{ { \cos }^{2} \alpha } - \frac{1}{ { \cot }^{2} \alpha } \\ = \frac{1 }{ { \cos}^{2} \alpha } - \frac{ \sin {}^{2} \alpha }{ { \cos}^{2} \alpha } \\ = \frac{1 - { \sin}^{2} \alpha }{ { \cos }^{2} \alpha } \\ = \frac{{ \cos }^{2} \alpha}{{ \cos }^{2} \alpha} \\ = 1](https://tex.z-dn.net/?f=+%5Cfrac%7B+%7Ba%7D%5E%7B2%7D+%7D%7B+%7Ba%7D%5E%7B2%7D+%5Ccos+%7B%7D%5E%7B2%7D+%28+%5Calpha+%29+%7D+-+%5Cfrac%7B+%7Bb%7D%5E%7B2%7D+%7D%7B+%7Bb%7D%5E%7B2%7D+%7B+%5Ccot+%7D%5E%7B2%7D+%28+%5Calpha+%29%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B1%7D%7B+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha+%7D+-+%5Cfrac%7B1%7D%7B+%7B+%5Ccot+%7D%5E%7B2%7D+%5Calpha+%7D+%5C%5C+%3D+%5Cfrac%7B1+%7D%7B+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%7D+-+%5Cfrac%7B+%5Csin+%7B%7D%5E%7B2%7D+%5Calpha+%7D%7B+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%7D+%5C%5C+%3D+%5Cfrac%7B1+-+%7B+%5Csin%7D%5E%7B2%7D+%5Calpha+%7D%7B+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha+%7D+%5C%5C+%3D+%5Cfrac%7B%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha%7D%7B%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha%7D+%5C%5C+%3D+1)
= RHS.
5)
(Gonna take A = alpha and B = beta)
![\frac{ \tan( \alpha ) }{ \tan( \beta ) } = m \\ \\ \frac{ \sin( \alpha ) \cos( \beta ) }{ \sin( \beta ) \cos( \alpha ) } = m \\ \\ \frac{ \cos( \beta ) }{ \cos( \alpha ) } \times m = n \\ \\ \frac{ \cos( \beta ) }{ \cos( \alpha ) } = \frac{n}{m} \\ \\ m \cos( \beta ) = n \cos( \alpha ) \frac{ \tan( \alpha ) }{ \tan( \beta ) } = m \\ \\ \frac{ \sin( \alpha ) \cos( \beta ) }{ \sin( \beta ) \cos( \alpha ) } = m \\ \\ \frac{ \cos( \beta ) }{ \cos( \alpha ) } \times m = n \\ \\ \frac{ \cos( \beta ) }{ \cos( \alpha ) } = \frac{n}{m} \\ \\ m \cos( \beta ) = n \cos( \alpha )](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Ctan%28+%5Calpha+%29+%7D%7B+%5Ctan%28+%5Cbeta+%29+%7D+%3D+m+%5C%5C+%5C%5C+%5Cfrac%7B+%5Csin%28+%5Calpha+%29+%5Ccos%28+%5Cbeta+%29+%7D%7B+%5Csin%28+%5Cbeta+%29+%5Ccos%28+%5Calpha+%29+%7D+%3D+m+%5C%5C+%5C%5C+%5Cfrac%7B+%5Ccos%28+%5Cbeta+%29+%7D%7B+%5Ccos%28+%5Calpha+%29+%7D+%5Ctimes+m+%3D+n+%5C%5C+%5C%5C+%5Cfrac%7B+%5Ccos%28+%5Cbeta+%29+%7D%7B+%5Ccos%28+%5Calpha+%29+%7D+%3D+%5Cfrac%7Bn%7D%7Bm%7D+%5C%5C+%5C%5C+m+%5Ccos%28+%5Cbeta+%29+%3D+n+%5Ccos%28+%5Calpha+%29+)
![{n}^{2} { \cos}^{2} \alpha = {m}^{2} { \cos}^{2} \beta \\ {n}^{2} { \cos}^{2} \alpha = {m}^{2} (1 - { \sin }^{2} \beta ) \\ {n}^{2} { \cos}^{2} \alpha = {m}^{2} (1 - \frac{ { \sin }^{2} \alpha }{ {m}^{2} } ) \\ {n}^{2} { \cos}^{2} \alpha = {m}^{2} - { \sin}^{2} \alpha \\ {n}^{2} { \cos}^{2} \alpha = ( {m}^{2} - 1 + { \cos }^{2} \alpha) \\ {n}^{2} { \cos }^{2} \alpha - { \cos }^{2} \alpha = {m}^{2} - 1 \\ { \cos }^{2} \alpha ( {n}^{2} - 1) = {m}^{2} - 1 \\ \\ { \cos }^{2} \alpha = \frac{ {m}^{2} - 1 }{ {n}^{2} - 1} {n}^{2} { \cos}^{2} \alpha = {m}^{2} { \cos}^{2} \beta \\ {n}^{2} { \cos}^{2} \alpha = {m}^{2} (1 - { \sin }^{2} \beta ) \\ {n}^{2} { \cos}^{2} \alpha = {m}^{2} (1 - \frac{ { \sin }^{2} \alpha }{ {m}^{2} } ) \\ {n}^{2} { \cos}^{2} \alpha = {m}^{2} - { \sin}^{2} \alpha \\ {n}^{2} { \cos}^{2} \alpha = ( {m}^{2} - 1 + { \cos }^{2} \alpha) \\ {n}^{2} { \cos }^{2} \alpha - { \cos }^{2} \alpha = {m}^{2} - 1 \\ { \cos }^{2} \alpha ( {n}^{2} - 1) = {m}^{2} - 1 \\ \\ { \cos }^{2} \alpha = \frac{ {m}^{2} - 1 }{ {n}^{2} - 1}](https://tex.z-dn.net/?f=+%7Bn%7D%5E%7B2%7D+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%3D+%7Bm%7D%5E%7B2%7D+%7B+%5Ccos%7D%5E%7B2%7D+%5Cbeta+%5C%5C+%7Bn%7D%5E%7B2%7D+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%3D+%7Bm%7D%5E%7B2%7D+%281+-+%7B+%5Csin+%7D%5E%7B2%7D+%5Cbeta+%29+%5C%5C+%7Bn%7D%5E%7B2%7D+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%3D+%7Bm%7D%5E%7B2%7D+%281+-+%5Cfrac%7B+%7B+%5Csin+%7D%5E%7B2%7D+%5Calpha+%7D%7B+%7Bm%7D%5E%7B2%7D+%7D+%29+%5C%5C+%7Bn%7D%5E%7B2%7D+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%3D+%7Bm%7D%5E%7B2%7D+-+%7B+%5Csin%7D%5E%7B2%7D+%5Calpha+%5C%5C+%7Bn%7D%5E%7B2%7D+%7B+%5Ccos%7D%5E%7B2%7D+%5Calpha+%3D+%28+%7Bm%7D%5E%7B2%7D+-+1+%2B+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha%29+%5C%5C+%7Bn%7D%5E%7B2%7D+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha+-+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha+%3D+%7Bm%7D%5E%7B2%7D+-+1+%5C%5C+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha+%28+%7Bn%7D%5E%7B2%7D+-+1%29+%3D+%7Bm%7D%5E%7B2%7D+-+1+%5C%5C+%5C%5C+%7B+%5Ccos+%7D%5E%7B2%7D+%5Calpha+%3D+%5Cfrac%7B+%7Bm%7D%5E%7B2%7D+-+1+%7D%7B+%7Bn%7D%5E%7B2%7D+-+1%7D+)
Hence proved.
3)
(I'm gonna take theta = alpha just for the sake of easy typing through Android)
I'm just gonna substitute the values I have so by using LHS,
= RHS.
5)
(Gonna take A = alpha and B = beta)
Hence proved.
Answered by
7
Attachments:
![](https://hi-static.z-dn.net/files/d9f/0e891cffe12cbfae121d50ba3cae649c.jpg)
![](https://hi-static.z-dn.net/files/d16/095166e13b84a669bc879aac8f27f948.jpg)
![](https://hi-static.z-dn.net/files/dc3/a50c0409ad6653de00333ca01e1bf851.jpg)
Similar questions
English,
6 months ago
Math,
6 months ago
Math,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago