Math, asked by sowmiya35, 1 year ago

can anyone solve this question
but shouldn't find LHS and RHS separately.
(cosec A-sin A)(sec A-cos A)=1÷tanA+cot A.

Answers

Answered by siddhartharao77
5

Step-by-step explanation:

Given: (cosecA - sinA)(secA - cosA)

=(\frac{1}{sinA}-sinA)(\frac{1}{cosA}-cosA)

=(\frac{1 - sin^2A}{sinA})(\frac{1-cos^2A}{cosA})

=\frac{cos^2A}{sinA} * \frac{sin^2A}{cosA}

=sinA * cosA

sin²A + cos²A = 1

=\frac{sinA*cosA}{sin^2A+cos^2A}

=\frac{1}{\frac{sin^2A+cos^2A}{sinA * cosA} }

=\frac{1}{\frac{sinA}{cosA} +\frac{cosA}{sinA}}

=\boxed{\frac{1}{tanA+cotA}}

Hope it helps!

Answered by vibhuti230404
2

RHS: 1÷sinA÷cosA+cosA÷sinA

1÷sin^2A+cos^2A÷sinAcosA

1÷1÷sinAcosA

sinAcosA

LHS: (1÷sinA-sinA)(1÷cosA-cosA)

(1-sin^2A÷sinA)(1-cos^2A÷cosA)

(cos^A÷sinA)sin^2A÷cosA)

sinAcosA =RHS

I HOPE THIS WILL HELP YOU JUST WRITE IT AS I WROTE AND PLEASE DROP A THANKS AND VOTE ALSO

THANK YOU ······

Similar questions