Math, asked by yashparate1508, 8 months ago

Can anyone solve this question PLZZZZZ. I will mark him/her as brainlist......​

Attachments:

Answers

Answered by Mihir1001
9

 \tt \qquad ( {y}^{2}  + 5y)( {y}^{2}  + 5y - 2) - 24 = 0 \\  \\  \implies   \tt  {y}^{2} ( {y}^{2}  + 5y - 2) + 5y( {y}^{2}  + 5y - 2) - 24  = 0\\  \\  \implies   \tt  {y}^{4}  + 5 {y}^{3}  - 2 {y}^{2}  + 5 {y}^{3}  + 25 {y}^{2}  - 10y - 24  = 0\\  \\  \implies  \tt  {y}^{4}  + (5 + 5) {y}^{3}  + (25 - 2) {y}^{2}  - 10y - 24  = 0\\  \\  \tt  \implies  {y}^{4}  + 10 {y}^{3}  + 23 {y}^{2}  - 10y - 24 = 0 \\  \\
Therefore,

 \tt sum \:  \: of \:  \: zeroes. \:  \alpha  +  \beta  +  \gamma  +  \delta =  -  \frac{10}{1}  = ( - 10) \\  \\  \tt sum \:  \: of \:  \: zeroes \:  \: taken \:  \: product \:  \: of \:  \: two \:  \: zeroes \:  \: at \:  \: a \:  \: time. \\  \alpha  \beta  +  \alpha  \gamma  +  \alpha  \delta  +  \beta  \gamma  +  \beta  \delta  +  \gamma  \delta  =  \frac{23}{1}   = 23 \\  \\  \\  \tt sum \:  \: of \:  \: zeroes \: taken \:  \: product \:  \: of \:  \: three \:  \: at \:  \: a \:  \: time. \\  \alpha  \beta  \gamma  +  \alpha  \beta  \delta  +  \beta  \gamma  \delta  +  \alpha  \gamma  \delta  =  -  \frac{( - 10)}{1}  = 10 \\  \\  \\  \tt product \:  \: of \:  \: zeroes.  \:  \alpha  \beta  \gamma  \delta  =  -  \frac{( - 24)}{1}  = 24
Similar questions