can anyone sopve question no. 4 and 6
No spam
Answers
[4.]
The given quadratic equation is
(k - 2)x² - (k - 4)x - 2 = 0
If α and β the roots of the given equation, then
α + β = - { - (k - 4)/(k - 2)} = (k - 4)/(k - 2)
αβ = - 2/(k - 2)
Given that, difference of the roots = 3
⇒ α - β = 3
Now, (α - β)²
= (α + β)² - 4αβ
= {(k - 4)/(k - 2)}² - 4 {- 2/(k -2)}
= {(k - 4)² + 8 (k - 2)}/(k - 2)²
= (k² - 8k + 16 + 8k - 16)/(k² - 4k + 4)
= k²/(k² - 4k + 4)
⇒ 3² (k² - 4k + 4) = k²
⇒ 9k² - 36k + 36 - k² = 0
⇒ 8k² - 36k + 36 = 0
⇒ 2k² - 9k + 9 = 0
⇒ (2k - 3) (k - 3) = 0
Either 2k - 3 = 0 or, k - 3 = 0
⇒ k = 3/2 , k = 3
[6.]
The given equations are
ax² + bx + c = 0 .....(i)
dx² + ex + f = 0 .....(ii)
Since α and β are roots of (i), using quadratic formula, we can find the roots as
α = { - b + √(b² - 4ac) }/(2a)
β = { - b - √(b² - 4ac) }/(2a)
Since (α + 2) and (β + 2) are roots of (ii), using quadratic formula, we can find the roots as
α + 2 = { - e + √(e² - 4df) }/(2d)
β + 2 = { - e - √(e² - 4df) }/(2d)
Putting the values of α and β from the previous solved ones, we get
{ - b + √(b² - 4ac) }/(2a) + 2
= { - e + √(e² - 4df) }/(2d)
⇒ (- b)/(2a) + {√(b² - 4ac)}/(2a) + 2
= (- e)/(2d) + {√(e² - 4df)}/(2d) .....(iii)
{ - b - √(b² - 4ac) }/(2a) + 2
= { - e - √(e² - 4df) }/(2d)
⇒ (- b)/(2a) - {√(b² - 4ac)}/(2a) + 2
= (- e)/(2d) - {√(e² - 4df)}/(2d) .....(iv)
On subtraction, from (iii) and (iv), we get
2 {√(b² - 4ac)}/(2a) = 2 {√(e² - 4df)}/(2d)
⇒ √{(b² - 4ac)/(e² - 4df)} = a/d
Squaring both sides, we get
(b² - 4ac)/(e² - 4df) = a²/d²