can anyone tell me how to do a question using completing the square' method(step by step)
i will mark as brainliest
akshayjustin123:
if there was another answer i would have marked u brainliest :(
Answers
Answered by
2
Steps
Now we can solve a Quadratic Equation in 5 steps:
Step 1 Divide all terms by a (the coefficient of x2).
Step 2 Move the number term (c/a) to the right side of the equation.
Step 3 Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.
We now have something that looks like (x + p)2 = q, which can be solved rather easily:
Step 4 Take the square root on both sides of the equation.
Step 5 Subtract the number that remains on the left side of the equation to find x.
Examples
OK, some examples will help!
Example 1: Solve x2 + 4x + 1 = 0
Step 1 can be skipped in this example since the coefficient of x2 is 1
Step 2 Move the number term to the right side of the equation:
x2 + 4x = -1
Step 3 Complete the square on the left side of the equation and balance this by adding the same number to the right side of the equation.
(b/2)2 = (4/2)2 = 22 = 4
x2 + 4x + 4 = -1 + 4
(x + 2)2 = 3
Step 4 Take the square root on both sides of the equation:
x + 2 = ±√3 = ±1.73 (to 2 decimals)
Step 5 Subtract 2 from both sides:
x = ±1.73 – 2 = -3.73 or -0.27
Now we can solve a Quadratic Equation in 5 steps:
Step 1 Divide all terms by a (the coefficient of x2).
Step 2 Move the number term (c/a) to the right side of the equation.
Step 3 Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.
We now have something that looks like (x + p)2 = q, which can be solved rather easily:
Step 4 Take the square root on both sides of the equation.
Step 5 Subtract the number that remains on the left side of the equation to find x.
Examples
OK, some examples will help!
Example 1: Solve x2 + 4x + 1 = 0
Step 1 can be skipped in this example since the coefficient of x2 is 1
Step 2 Move the number term to the right side of the equation:
x2 + 4x = -1
Step 3 Complete the square on the left side of the equation and balance this by adding the same number to the right side of the equation.
(b/2)2 = (4/2)2 = 22 = 4
x2 + 4x + 4 = -1 + 4
(x + 2)2 = 3
Step 4 Take the square root on both sides of the equation:
x + 2 = ±√3 = ±1.73 (to 2 decimals)
Step 5 Subtract 2 from both sides:
x = ±1.73 – 2 = -3.73 or -0.27
Answered by
0
Answer:
Step-by-step explanation:
Step 1 Divide all terms by a (the coefficient of x2).
Step 2 Move the number term (c/a) to the right side of the equation.
Step 3 Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.
Step 4 Take the square root on both sides of the equation.
Step 5 Subtract the number that remains on the left side of the equation to find x.
Similar questions