Math, asked by aparnababu99, 6 months ago

can anyone tell me the answer...?​

Attachments:

Answers

Answered by satyamkumar5428
2

Answer:

Area = 4 cm²

Perimeter = 6√2 cm

Diagonal = √10 cm

Step-by-step explanation:

Area = l × b = √8 × √2 = √16 = 4cm²

Perimeter = 2(l+b) = 2 (2√2 + √2 ) = 2 × 3√2 = 6√2 cm

AC = √AB² + BC² AC = √(√8)² + (√2)² = √8 + 2 = √10 cm

Answered by nandanaMK
6

 Given , \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \\  Length =  \sqrt{8}  \: cm \\ Breadth  =  \sqrt{2}  \: cm

a)

Area=Length × Breadth

 \sqrt{8}  \times  \sqrt{2}  \\  =  \sqrt{16}  \:  \:  \:  \:  \\  = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Area = 4 \: cm

Perimeter = 2 \: (Length + Breadth)

2( \sqrt{8}  +  \sqrt{2} ) \\

 = 2( \sqrt{(4 \times 2)}  +  \sqrt{2} )

 = 2(2 \sqrt{2}  +  1\sqrt{2} )

 = 2(3 \sqrt{2} )

 = 6 \sqrt{2}

Perimeter = 6 \sqrt{2} cm

b)

The  \: given  \: is \:  a  \: right  \: angled \:  triangle. \\

So, \:  by  \: Pythagoras \: Theorem ,

{AB}^{2}+{BC}^{2}={AC}^{2}

AB= \sqrt{8}  \\ BC= \sqrt{2}

 ({ \sqrt{8}) }^{2}  +  { (\sqrt{2} )}^{2}  =  {AC}^{2}  \\  = 8 + 2 =  {AC}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

10 =  {AC}^{2}  \\ AC =  \sqrt{10}

Diagonal \:  AC= \sqrt{10}  \: cm

Hope \:   \: this \:   \: helps  \: \:  you \: !

Similar questions