Math, asked by Anonymous, 11 months ago

Can anyone tell me the answer of this?
Don't copy and past ,,
Best answer will be marked as BRAINLIST ​

Attachments:

Answers

Answered by HariyaniDev
0

 \frac{ \cosecθ +  \cotθ  }{ \cosecθ -  \cotθ }  = 4

Attachments:
Answered by anshi60
18

\huge{\bold{ Solution}} \\  \\ {\red{\huge{\underline{\mathbb{Given}}}}} \\  \\5 cos \theta = 3 \\ cos \theta =  \frac{3}{5}  \\  \\ here \\   = \frac{cosec \theta + cot \theta}{cosec \theta - cot \theta}  \\  \\  =  \frac{ \frac{1}{sin \theta }  +  \frac{cos \theta}{sin \theta} }{ \frac{1}{sin \theta} -  \frac{cos \theta}{sin \theta}  }  \\  \\  =  \frac{ \frac{1 + cos \theta}{sin \theta} }{ \frac{1 - cos \theta}{sin \theta} }  \\  \\  putting \: cos \theta =  \frac{3}{5}  \\  \\  =   \frac{1 +  \frac{3}{5} }{1 -  \frac{3}{5} }  \\  \\  =  \frac{ \frac{5 + 3}{5} }{ \frac{5  - 3}{5} }  \\  \\  =  \frac{ \frac{8}{5} }{ \frac{2}{5} }  \\  \\  =  \frac{8}{2}  \\  \\  = 4 \\  \\  \\ \huge{\blue{{\purple{\mathbb{ \frac{cosec \theta + cot \theta}{cosec \theta - cot \theta}  = 4}}}}}

hope its helpful ❤

Similar questions