Math, asked by kashish45, 1 year ago

can anyone tell the all formulas of trigonometry

Answers

Answered by peetakatniss4ever
4
sin= p/h
cos=b/h
tan=p/b
cosec=h/p
sec=h/b
cot=b/p

1- sin^2 0=cos^2 0
sec^2 0-1=tan^2 0
cosec^2 0-1=cot^2 0
u can derive 3 more formulas from these 3 by changing the sides.

sin(90-@)=cos@
cos(90-@=sin @
tan(90-@=cot@
cot(90-@)=tan@
sec(90-@)=cosec@
cosec(90-@)=sec@

these are all...
hope it helped.
pls mark this as the brainliest answer and dont forget the red hearts....

peetakatniss4ever: 0 refers to theta....@ refers to theta
kashish45: ok
Answered by Brenquoler
5

 { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Perpendicular/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Base/Hypotenuse }}}

 { \green{ \bf{tan θ = Perpendicular/Base  }}}

 { \green{ \bf{sec θ = Hypotenuse/Base   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Perpendicular }}}

 { \green{ \bf{  cot θ = Base/Perpendicular }}}

 { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = 1/sin θ }}}

 { \green{ \bf{ sec θ = 1/cos θ  }}}

 { \green{ \bf{  cot θ = 1/tan θ }}}

 { \green{ \bf{sin θ = 1/cosec θ   }}}

 { \green{ \bf{ cos θ = 1/sec θ  }}}

 { \green{ \bf{   tan θ = 1/cot θ}}}

 { \red{ \bf{ Their \: co-function \: Identities:  }}}

 { \green{ \bf{  sin (90°−x) = cos x }}}

 { \green{ \bf{cos (90°−x) = sin x   }}}

 { \green{ \bf{ tan (90°−x) = cot x  }}}

 { \green{ \bf{  cot (90°−x) = tan x }}}

 { \green{ \bf{ sec (90°−x) = cosec x  }}}

 { \green{ \bf{ cosec (90°−x) = sec x  }}}

 { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin²θ + cos²θ = 1 }}}

 { \green{ \bf{  sec²θ - tan²θ = 1 }}}

 { \green{ \bf{ cosec²θ - cot²θ = 1  }}}

Similar questions