Math, asked by okboomerob7495, 1 month ago

can I differentiate the function 10 cos^(2)x -6sinx.cosx+2sin^(2) to get max and min value

Answers

Answered by fa9941658
1

Answer:

Answer

Correct option is

D

(a−b)

2

Given u=

a

2

cos

2

θ+b

2

sin

2

θ

+

a

2

sin

2

θ+b

2

cos

2

θ

∴u

2

=(a

2

+b

2

)cos

2

θ+(a

2

+b

2

)sin

2

θ+2

a

2

cos

2

θ+b

2

sin

2

θ

a

2

sin

2

θ+b

2

cos

2

θ

u

2

=a

2

+b

2

+2

a

4

cos

2

θsin

2

θ+b

4

cos

2

θsin

2

θ+a

2

b

2

(cos

4

θ+sin

4

θ)

=a

2

+b

2

+2

(a

4

+b

4

)cos

2

θsin

2

θ+a

2

b

2

(1−2cos

2

θsin

2

θ)

u

2

=a

2

+b

2

+2

4

a

4

+b

4

(sin2θ)

2

+a

2

b

2

(1−

2

sin

2

)

u

2

=a

2

+b

2

+2

4

(a

2

−b

2

)

2

(sin2θ)

2

+a

2

b

2

For max. value of u

2

, sin

2

2θ=1

u

2

=a

2

+b

2

+2

2

(a

2

+b

2

)

2

=2(a

2

+b

2

)

And for min. u

2

,sin2θ=0

u

2

=a

2

+b

2

+2ab=(a+b)

2

∴ Difference between max. and min. value of u

2

is 2(a

2

+b

2

)−(a+b)

2

=(a−b)

2

.

Answered by sunprince0000
1

Answer

Correct option is

D

(a−b)  

2

 

Given u=  

a  

2

cos  

2

θ+b  

2

sin  

2

θ

+  

a  

2

sin  

2

θ+b  

2

cos  

2

θ

 

∴u  

2

=(a  

2

+b  

2

)cos  

2

θ+(a  

2

+b  

2

)sin  

2

θ+2  

a  

2

cos  

2

θ+b  

2

sin  

2

θ

 

a  

2

sin  

2

θ+b  

2

cos  

2

θ

 

u  

2

=a  

2

+b  

2

+2  

a  

4

cos  

2

θsin  

2

θ+b  

4

cos  

2

θsin  

2

θ+a  

2

b  

2

(cos  

4

θ+sin  

4

θ)

 

=a  

2

+b  

2

+2  

(a  

4

+b  

4

)cos  

2

θsin  

2

θ+a  

2

b  

2

(1−2cos  

2

θsin  

2

θ)

 

u  

2

=a  

2

+b  

2

+2  

4

a  

4

+b  

4

 

(sin2θ)  

2

+a  

2

b  

2

(1−  

2

sin  

2

)

 

u  

2

=a  

2

+b  

2

+2  

4

(a  

2

−b  

2

)  

2

 

(sin2θ)  

2

+a  

2

b  

2

 

 

For max. value of u  

2

,  sin  

2

2θ=1

u  

2

=a  

2

+b  

2

+2  

2

(a  

2

+b  

2

)  

2

 

 

=2(a  

2

+b  

2

)

And for min. u  

2

,sin2θ=0

u  

2

=a  

2

+b  

2

+2ab=(a+b)  

2

 

∴ Difference between max. and min. value of u  

2

 is 2(a  

2

+b  

2

)−(a+b)  

2

=(a−b)  

2

.

Similar questions