Math, asked by cg172212, 8 months ago

Can i get quick answer​

Attachments:

Answers

Answered by RvChaudharY50
277

Qᴜᴇsᴛɪᴏɴ :-

Express (-5i) * (i/8) in the form of a + ib ?

Sᴏʟᴜᴛɪᴏɴ :-

→ (-5i) * (i/8)

→ {(-5) * (1/8)} * (i * i)

→ (-5/8) * (i)²

Putting value of (i)² = (-1) now, { i is iota here.}

→ (-5/8) * (-1)

→ (5/8)

So, in a + ib form ,

(5/8) + 0i (Ans.)

where :-

  • (5/8) = Real Part.
  • (0i) = Imaginary Part.

__________________

Extra :-

→ Integral Powers of iota (i)

  1. i =√-1
  2. i2 = -1
  3. i3 = -i
  4. i4 = 1

So,

  • i^(4n+1) = i,
  • i^(4n+2) = -1
  • i^(4n+3) = -i
  • i^(4n+4) = i^(4n) = 1

In other words,

  • i^n = (-1)^(n/2), if n is an even integer.
  • i^n = (-1)^{(n-1)/2}.i, if is an odd integer.

___________________

Answered by Anonymous
89

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \: {\sf{( - 5i) \times  \bigg( \frac{1i}{8}   \bigg) }} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{ - 5i \times  \frac{1i}{8}  }} \\ \\

 : \implies{\sf{ - 5 \times  \frac{1}{8} \times( i \times i  )}} \\ \\

we know that i = √-1

 : \implies{\sf{ - 5 \times  \frac{1}{8} \times(  \sqrt{ - 1}  \times  \sqrt{ - 1} )  }} \\ \\

 : \implies{\sf{ - 5 \times  \frac{1}{8} \times   - 1  }} \\ \\

 : \implies{\sf{  \frac{5}{8}   + 0i}} \\ \\

__________________________________

  • i is called iota whose square is -1.
  • Therefore, i² = -1.
  • Number i and its real multiple are called Imaginary numbers.
Similar questions