History, asked by dishi2007, 1 month ago

can I get the answer of above attachment​

Attachments:

Answers

Answered by iaaircondition
1

Answer:

\lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \sqrt[n]{x}  \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \geq \left \{ {{y=2} \atop {x=2}} \right. \leq \\ x^{2} \geq  \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \alpha \frac{x}{y} x_{123} \beta

Explanation:

Answered by ItzRomanticBabe
1

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

The correct option for the above question is option b 5(√3+√2)

Similar questions