Math, asked by fathimathmisiri, 1 year ago

Can I know the 25th answer step by step?

Attachments:

Answers

Answered by TPS
2

 { \sec}^{2} 10 -  { \cot}^{2} 80 +  \frac{ \sin(15) \cos(75)  +  \cos(15)  \sin(75)  }{ \cos(  \beta  )  \sin(90 -  \beta ) +  \sin( \beta ) \cos(90 -  \beta )   }  \\  \\   = { \sec}^{2} 10 -  {  \tan}^{2} (90 - 80)+  \frac{ \sin(15)  \sin (90 - 75)  +  \cos(15)   \cos(90 - 75)  }{ \cos(  \beta  )  \sin(90 -  \beta ) +  \sin( \beta ) \cos(90 -  \beta )   }


 = ({ \sec}^{2} 10 -  {  \tan}^{2} 10)+  \frac{ \sin(15)  \sin (15)  +  \cos(15)   \cos(15)  }{ \cos(  \beta  )   \cos( \beta ) +  \sin( \beta )  \sin( \beta )   }  \\  \\  =( 1) +  \frac{ { \sin}^{2}( 15) +  { \cos }^{2}(15) }{{ \sin}^{2}(  \beta ) +  { \cos }^{2}( \beta )}  \\  \\  = 1 +  \frac{1}{1}  \\  \\  = 1 + 1 \\  \\  = 2



Answered by Anonymous
0

Answer:

\Huge\boxed{2}

Step-by-step explanation:

 \begin{lgathered}{ \sec}^{2} 10 - { \cot}^{2} 80 + \frac{ \sin(15) \cos(75) + \cos(15) \sin(75) }{ \cos( \beta ) \sin(90 - \beta ) + \sin( \beta ) \cos(90 - \beta ) } \\ \\ = { \sec}^{2} 10 - { \tan}^{2} (90 - 80)+ \frac{ \sin(15) \sin (90 - 75) + \cos(15) \cos(90 - 75) }{ \cos( \beta ) \sin(90 - \beta ) + \sin( \beta ) \cos(90 - \beta ) }\end{lgathered}

\begin{lgathered}= ({ \sec}^{2} 10 - { \tan}^{2} 10)+ \frac{ \sin(15) \sin (15) + \cos(15) \cos(15) }{ \cos( \beta ) \cos( \beta ) + \sin( \beta ) \sin( \beta ) } \\ \\ =( 1) + \frac{ { \sin}^{2}( 15) + { \cos }^{2}(15) }{{ \sin}^{2}( \beta ) + { \cos }^{2}( \beta )} \\ \\ = 1 + \frac{1}{1} \\ \\ = 1 + 1 \\ \\ = 2\end{lgathered}

Similar questions