Physics, asked by psumanth241, 1 year ago

can I know the answer for this question?​

Attachments:

Answers

Answered by BrainlyConqueror0901
6

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Initial\:velocity=50\:m/s}}

{\bold{\therefore Angle\:of\:projection=sin^{-1}(\frac{3}{10})}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a missile whose horizontal range and time of flight is given.

• We have to find the initial velocity for this projection and angle of projection.

 \underline \bold{Given : } \\  \implies Range = 150 \: m \\  \\  \implies Time \: of \: flight = 3 \: sec \\  \\  \implies Acceleration(a) = 10 \: m/ {s}^{2}  \\  \\  \underline \bold{To \: find: }  \\  \implies Initial \: velocity(u) =  ? \\  \\  \implies Angle \: of \: projection  = ?

 \bold{Using \: formula \: of \: range : } \\ \implies R=  \frac{ {u}^{2}  \: sin  \: 2\theta}{g}  \\  \\  \implies 150 =  \frac{ {u}^{2} \: sin \: 2 \theta }{10}  \\  \\  \implies   {u}^{2}  \: sin \: 2 \theta = 1500 \\  \\  \implies sin  \: 2 \theta =  \frac{1500}{ {u}^{2} }  \\  \\  \implies sin \theta =  \frac{ \cancel{1500}}{ {u}^{2} \:  \cancel2 }  \\  \\  \implies sin \theta =  \frac{750}{ {u}^{2} }  -  -  -  -  - (1) \\  \\  \bold{Using \: formula \: of \: tim \: of \: flight : } \\   \implies T =  \frac{2u  \: sin \theta}{g}  \\   \\  \implies 3 =  \frac{2u \: sin \theta}{10}  \\  \\  \bold{Putting \: value \: of \: sin \theta : } \\  \implies 3 =  \frac{2 \times u \times 750}{ {u}^{\cancel2} \times \cancel10 }  \\  \\ \implies 3u = 150 \\  \\ \implies u =  \frac{\cancel{150}}{\cancel3} \\  \\ \bold{\implies u = 50 \:m/s}  \\  \\  \bold{Putting \: value \: of \: u \: in \: (1)} \\  \implies sin \theta =  \frac{750}{ {50}^{2} }  \\  \\  \implies sin \theta =  \frac{3}{10}  \\  \\   \bold{\implies \theta  =   {sin }^{ - 1} (\frac{3}{10} })

Answered by Amritanshukesari4u
5

\huge{\textbf{\underline{\green{Answer:-}}}}

\boxed{\bold{u = 50}}

\boxed{\bold{ \theta = sin^{-1}\frac{3}{10}}}

\huge{\textbf{\underline{\green{Step-by-Step Explanation:-}}}}

Question:- find the velocity of projection and angle of projection of a missile which has a horizontal range of 150m, if the time of flight for that range in 3 second (g = 10 m/).

Solution:-

Given,

Range of the missile = 150m

Time of flight = 3s

Acceleration of flight = 10 m/s²

Here, we have to find out initial velocity of projection and angle of projection of a missile.

By using the formula of Range,

\boxed{R = \frac{u^2 sin 2\theta}{g}}

\implies{150 =  \frac{u^2 sin 2\theta}{10}}

\implies{u^2 sin 2\theta = 1500}

\implies{ sin 2\theta = \frac{1500}{u^2}}

\implies{ sin \theta = \frac{1500}{u^2 × 2}}

\implies{ sin \theta = \frac{750}{u^2} →(Equation 1)}

By using the formula of time of flight,

\boxed{T = \frac{2u sin \theta}{g}}

\implies{3 = \frac{2u sin \theta}{10}}

Putting the given values,

\implies{3 = \frac{2 × u × 750}{u^2× 10}}

\implies{3u = 150}

\boxed{\bold{.°. u = 50}}

Now,

Putting the given values in equation (1),

\implies{ sin \theta = \frac{750}{u^2}}

\implies{ sin \theta = \frac{750}{50^2}}

\implies{ sin \theta = \frac{750}{2500}}

\implies{ sin \theta = \frac{3}{10}}

\boxed{\bold{ .°.\theta = sin^{-1}\frac{3}{10}}}

Similar questions