can molecules refract? and why?
Answers
Answer:
Molecular refraction is often represented as the sum of the “refractions” of certain constituents that can be either atoms or groups of atoms making a molecule of a complex compound, or bonds of the atoms in such a molecule
Answer:
Ever notice how your leg looks bent as you dangle it in the water from the edge of a pool? Why do fish seem to radically change position as we look at them from different viewpoints in an aquarium? What makes diamonds sparkle so much?
These are all questions that can be addressed with the important concept of refraction, the bending of light as it encounters a medium different than the medium through which it has been traveling. This meeting place of two different media is called the interface between the media. All refraction of light (and reflection) occurs at the interface.
What happens at the interface to make light refract or reflect? When light is incident at a transparent surface, the transmitted component of the light (that which goes through the interface) changes direction at the interface. Another component of the light is reflected at the surface. As shown in Figure 1, the refracted beam changes direction at the interface and deviates from a straight continuation of the incident light ray.
Light in air incident on glass surface where it is partly reflected at the interface and partly transmitted into the glass. The direction of the transmitted ray is changed at the air/glass surface. The angle of refraction r is less than the angle of incidence i.
The change of direction of light as it passes from one medium to another is associated with a change in velocity and wavelength. The energy of the light is unchanged as it passes from one media to another. When visible light in air enters a medium such as glass, the velocity of light decreases to 75% of its velocity in air and in other materials the decrease can be even more substantial. For example, in linseed oil, the velocity decreases to 66% of its velocity in air. Figure 2 displays in bar chart format the velocity of light in different media. The 100% value is the velocity of light in vacuum. For air, the velocity is 99.97% of the speed in vacuum. For some pigments such as titanium (Ti) white, the velocity decreases to 40%.