Math, asked by samairarora180, 9 months ago

can sm1 solve this??

Attachments:

Answers

Answered by LuckyLao
1

Answer:

9

Step-by-step explanation:

First, we need to rationalize the denominators of the given values of a and b.

a = \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} * \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} - \sqrt{7}}       and        b = \frac{\sqrt{11} + \sqrt{7}}{\sqrt{11} - \sqrt{7}} * \frac{\sqrt{11} + \sqrt{7}}{\sqrt{11} + \sqrt{7}}

We know that, (a±b)² = a² ± 2ab + b     and     (a+b)(a-b) = a² - b²

a = \frac{11 - 2\sqrt{77} + 7}{11 - 7}              and             b = \frac{11 + 2\sqrt{77} + 7}{11 - 7}

a = \frac{18 - 2\sqrt{77}}{4}                 and              b = \frac{18 + 2\sqrt{77}}{4}

a = \frac{2[9 - \sqrt{77}]}{2 * 2}                 and              b = \frac{2[9 + \sqrt{77}]}{2 * 2}

a = \frac{9 - \sqrt{77}}{2}                    and              b = \frac{9 + \sqrt{77}}{2}

a + b = \frac{9 - \sqrt{77}}{2} + \frac{9 + \sqrt{77}}{2}

           ⇒ \frac{9 - \sqrt{77} + 9 + \sqrt{77}}{2}

           ⇒ \frac{18}{2}

           ⇒ 9

Hope it helps...

Thanks

Similar questions