Math, asked by sarahkathuria15, 8 months ago

Can somebody please give a detailed solution for this sum

Attachments:

Answers

Answered by senboni123456
0

Answer:

c) 1407

Step-by-step explanation:

Let, λ = α .... (i)

 \alpha  =  log_{ {x}^{2} }( \sqrt{x \sqrt{x \sqrt{x} } } )

 =  >  {x}^{2 \alpha }  =  \sqrt{x \sqrt{x \sqrt{x} } }

 =  >  {x}^{2 \alpha }  =  \sqrt{x \sqrt{ {x}^{ \frac{3}{2} } } }

 =  >  {x}^{2 \alpha }  =  \sqrt{x .{x}^{ \frac{3}{4} } }

 =  >  {x}^{2 \alpha }  =  {x}^{ \frac{7}{8} }

 =  > 2 \alpha  =  \frac{7}{8}

  =  > \alpha  =  \frac{7}{16}

so, λ = 7/16

Now,

3216 \alpha  = 3216 \times  \frac{7}{16}

 = 201 \times 7 = 1407

Similar questions