Math, asked by itszainab14, 10 months ago

can someone answer it fast​

Attachments:

Answers

Answered by aman7913
3

hint for your question

separate upper in two terms

(sin²titha + cos²titha) (sin²titha+cos²titha)

&

1= sin²titha+cos²titha

lower term get formula of

(a+b)²

then solve it .....by upper terms

hope u understand

Answered by Anonymous
18

Question

 \large{ \sf{ \dfrac{(sin {}^{4}x +  {cos}^{4}x ) }{1 - 2 {sin}^{2}x \:  {cos}^{2}x  }  = 1}}

Answer

To Prove

 \large{ \sf{ \dfrac{(sin {}^{4}x +  {cos}^{4}x ) }{1 - 2 {sin}^{2}x \:  {cos}^{2}x  }  = 1}}

LHS

 \large{ \sf{ \dfrac{(sin {}^{4}x +  {cos}^{4}x ) }{1 - 2 {sin}^{2}x \:  {cos}^{2}x  }}} \\  \\  \large{ \longrightarrow \:  \sf{ \frac{( {sin}^{2}x) {}^{2}  +  ({cos}^{2}x) {}^{2}   }{1 - 2 {sin}^{2} x \: cos {}^{2} x} }}

Since,

sin²∅ + cos²∅ = 1

 \large{ \longrightarrow \:  \sf{ \dfrac{1}{( {sin}^{2}x + cos {}^{2}x - 2 {sin}^{2}xcos {}^{2}x)    } }}

 \large{ \longrightarrow \:  \sf{ \dfrac{1}{1 - 0} }} \\  \\   \large{\longrightarrow \: \sf{1 } \longrightarrow \: RHS}

Hence,Proved

Similar questions