Math, asked by 427nsy, 10 months ago

can someone answer it fast ​

Attachments:

Answers

Answered by Anonymous
1

Answer:

Cos58°cos32°-cos58°sin58°

(Cancelling cos58 & -cos58)we get

Cos32° - sin58°

[Sin58°= cos(90-58)]; 90-58=32

Cos32°-cos32°=0

Answered by Nereida
4

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

\leadsto  {\tt {cos 58^{\circ}cos 32^{\circ}-cos 58^{\circ}sin 58^{\circ}}}

By the formula,

\leadsto\huge {\boxed  {\tt  {cos \theta = sin  (90^{\circ}-\theta)}}}

\leadsto  {\tt {cos 58^{\circ}sin (90-32^{\circ})-cos 58^{\circ}sin 58^{\circ}}}

\leadsto  {\tt {cos 58^{\circ}sin 58^{\circ}-cos 58^{\circ}sin 58^{\circ}}}

\leadsto \huge {\boxed {\tt  {0}}}

\rule{200}2

Related Formulas :-

  •  {\tt  {cos \theta = sin  (90^{\circ}-\theta)}}
  •  {\tt  {sin \theta = cos  (90^{\circ}-\theta)}}
  •  {\tt  {tan \theta = cot  (90^{\circ}-\theta)}}
  •  {\tt  {cot \theta = tan  (90^{\circ}-\theta)}}
  •  {\tt  {cosec \theta = sec  (90^{\circ}-\theta)}}
  •  {\tt  {sec \theta = cosec (90^{\circ}-\theta)}}

\rule {200}2

Similar questions