Math, asked by scarletwitch190, 10 months ago

can someone answer this question

Attachments:

Answers

Answered by Anonymous
2

Step-by-step explanation:

solution:-

 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  \\  \frac{(3 -  \sqrt{5} )(7 + 3 \sqrt{5}) - (7 - 3 \sqrt{5})(3 +  \sqrt{5} )  }{(3 +  \sqrt{5} )(3 -  \sqrt{5}) }  \\  \frac{(21 + 9 \sqrt{5} - 7 \sqrt{5} - 3 \sqrt{5}  \times  \sqrt{5}  )  - (21 + 7 \sqrt{5}  - 9 \sqrt{5} - 3 \sqrt{5}  \times  \sqrt{5}  }{(3) {}^{2} - ( \sqrt{5)}  {}^{2}  }  \\  \frac{(21 + 2 \sqrt{5} - 15) - (21 - 2 \sqrt{5}   - 15)}{9 - 5}  \\  \frac{(6 + 2 \sqrt{5} ) - (6 - 2 \sqrt{5}) }{4}  \\  \frac{ \not{6} + 2 \sqrt{5}  -  \not6 + 2 \sqrt{5} }{4}  \\  \frac{0 + 4 \sqrt{5} }{4 }  \\ 0 +  \frac{4 \sqrt{5} }{4}  \\ 0 +  \sqrt{5}  \\ a = 0 \:  \: and \:  \: b = 1

i hope u will find ur answer

Similar questions