Can someone explain the basics of Inorganic Chemistry to me!!! plz plz plz ... Have a test in 30 minutes!!!! I will mark as BRAINLEST!!!!
Answers
Answer:
Inorganic chemistry is the study of the synthesis, reactions, structures and properties of compounds of the elements. This subject is usually taught after students are introduced to organic chemistry, which concerns the synthesis and reactions of compounds of carbon
Inorganic Chemistry
What Is Inorganic Chemistry?
Inorganic chemistry is concerned with the properties and behavior of inorganic compounds, which include metals, minerals, and organometallic compounds. While organic chemistry is defined as the study of carbon-containing compounds and inorganic chemistry is the study of the remaining subset of compounds other than organic compounds, there is overlap between the two fields (such as organometallic compounds, which usually contain a metal or metalloid bonded directly to carbon).
Vimeo ID: 31143999
Where Is Inorganic Chemistry Used?
Inorganic compounds are used as catalysts, pigments, coatings, surfactants, medicines, fuels, and more. They often have high melting points and specific high or low electrical conductivity properties, which make them useful for specific purposes. For example:
Ammonia is a nitrogen source in fertilizer, and it is one of the major inorganic chemicals used in the production of nylons, fibers, plastics, polyurethanes (used in tough chemical-resistant coatings, adhesives, and foams), hydrazine (used in jet and rocket fuels), and explosives.
Chlorine is used in the manufacture of polyvinyl chloride (used for pipes, clothing, furniture etc.), agrochemicals (e.g., fertilizer, insecticide, or soil treatment), and pharmaceuticals, as well as chemicals for water treatment and sterilization.
Titanium dioxide is the naturally occurring oxide of titanium, which is used as a white powder pigment in paints, coatings, plastics, paper, inks, fibers, food, and cosmetics. Titanium dioxide also has good ultraviolet light resistance properties, and there is a growing demand for its use in photocatalysts.
Inorganic chemistry is a highly practical science—traditionally, a nation’s economy was evaluated by their production of sulfuric acid because it is one of the more important elements used as an industrial raw material.
Work Settings
Inorganic chemists are employed in fields ranging from mining to microchips. Their work is based on understanding the behavior and the analogues for inorganic elements and how these materials can be modified, separated, and used. It includes developing methods to recover metals from waste streams; employment as analytical chemists specializing in the analysis of mined ores; and performing research on the use of inorganic chemicals for treating soil.
Many inorganic chemists work in industry, but they also work in academic institutions and in government labs. Inorganic chemists who work in government say their time is increasingly spent writing grant proposals and competing for research money.
Inorganic chemists compare their jobs to those of materials scientists and physicists. The common focus is on the exploration of the relationship between physical properties and functions, but an inorganic chemist is more concerned with these properties at the molecular level.
Industries that Hire Inorganic Chemists
Environmental Science
Environmental chemistry uses inorganic chemistry to understand how the uncontaminated environment works, which chemicals in what concentrations are present naturally, and with what effects. They also identify the effects of additives, such as fertilizers, on natural processes. The U.S. Environmental Protection Agency and other agencies detect and identify the nature and source of pollutants.
Companies that focus in environmental science include CH2M Hill, Bechtel, Veolia, URS Corporation, Black & Veatch, Tetra Tech, Energy Solutions, and government agencies as the U.S. Environmental Protection Agency (EPA). These companies study the chemical and biochemical phenomena that occur in natural places. They use atmospheric, aquatic, and soil chemistry, as well as analytical chemistry.
Fibers and Plastics
Fibers are materials that are continuous filaments or discrete elongated pieces, similar to lengths of thread. They are important for a variety of applications, including holding tissues together in both plants and animals. There are many different kinds of fibers including textile fiber, natural fibers, and synthetic or human-made fibers such as cellulose, mineral, polymer, and microfibers. Fibers can be spun into filaments, string, or rope; used as a component of composite material; or matted into sheets to make products such as paper. Fibers are often used in the manufacture of other materials.