Math, asked by priyankasarkar24, 9 months ago

can someone help me with this sum with steps.. ​

Attachments:

Answers

Answered by prince5132
7

GIVEN :-

 \implies  \sf \: \dfrac{x ^{2n + 3} . \: x ^{(2n +1)(n + 2) } }{(x^{3})^{2n + 1} \: . \: x ^{n(2n + 1)}  }

TO FIND :-

 \implies  \sf value \: of \:  \: \dfrac{x ^{2n + 3} . \: x ^{(2n +1)(n + 2) } }{(x^{3})^{2n + 1} \: . \: x ^{n(2n + 1)}  }

SOLUTION :-

 \to  \sf \: \dfrac{x ^{2n + 3} . \: x ^{(2n +1)(n + 2) } }{(x^{3})^{2n + 1} \: . \: x ^{n(2n + 1)}  } \\  \\  \to \:  \sf \dfrac{x ^{2n + 3}  \: . \: x ^{2n(n + 2) + 1(n + 2)} }{x ^{6n + 3}  \: . \: x ^{2n ^{2}  + n} }  \\  \\  \to \sf \:  \dfrac{x ^{2n + 3  }  \: . \: x ^{2n ^{2}  + 4n + n + 2} }{x ^{6n + 3}  \: . \: x ^{2n^{2}  + n} }

➠ By using identity: x² . x³ = x² + ³.

 \to \sf \:  \dfrac{x ^{(2n + 3) + (2n^{2}  + 4n +n +  2)} }{x ^{(6n + 3 )+ (2n ^{2} + n) } }   \\  \\ \to \sf \:  \dfrac{x ^{2n + 3 + 2n^{2}  + 4n +n +  2} }{x ^{6n + 3 + 2n ^{2} + n} }  \\  \\  \to \sf \:  \dfrac{x ^{2n ^{2} +  7n +5 } }{x ^{2n ^{2} + 7n + 3 } }

➠ By using identity: x² ÷ x³ = x²-³

 \to \sf \: x ^{(2n ^{2 }  + 7n + 5) - (2n ^{2}  + 7n + 3)}  \\  \\  \to \sf \: x ^{ \cancel{2n ^{2} } +  \cancel{7n}  + 5  \cancel{-2n ^{2}} \cancel{ - 7n} - 3  }  \\  \\  \to \sf \: x ^{5 - 3}  \\  \\  \to \boxed{ \red{ \bf \: x ^{2} }}

Hence the required answer is x².

ADDITIONAL INFORMATION :-

\boxed{\begin{minipage}{7cm} \\ \sf{ $  \implies \bf \sqrt[n]{ \sqrt[m]{ \sqrt[p]{((a^{x} )^{y}) ^{z}  } } }  = (a ^{xyz} )^{ \frac{1}{mnp} }  = a ^{ \frac{xyz}{mnp} }$} \\ \\ \sf{ $ \implies a^m \times a^n = a^{m+n}$} \\  \\  \sf{$ \implies {a}^{m} \times b^m = ab^m $} \\  \\ \sf{$ \implies \dfrac{a^m}{a^n} = a^{m - n} ( \tt{ If  \: m  > n} ) $} \\  \\ \sf{$ \implies \dfrac{a^m}{ a^n} = \dfrac{ 1}{ a^{n-m} } ( \tt{ If  \: n > m )}$} \\  \\ \sf{$ \implies (a^m)^n = a^{mn}$ } \\  \\ \sf{$ \implies a^{-n} = \dfrac{1}{ a^n}$}\end{minipage}}

Answered by Anonymous
1

idk.

sry for it!!!

“Get lost, creep.”❤️

Similar questions