can someone keep the procedure of thissum?I did this but answer wasn't there in options
Attachments:
Answers
Answered by
1
Hi ,
x = 5 + 2√6
√x = √ ( 5 + 2√6 )
= √ [ ( √3 )² + (√2 )² + 2 × √3 × √2 ]
= √ ( √3 + √2 )²
= √3 + √2 ----( 1 )
1/√x = 1/( √3 + √2 )
= ( √3 - √2 )/ [ ( √3 + √2 ) (√3-√2 )]
= ( √3 - √2 ) / [ ( √3 )² - ( √2 )² ]
= ( √3 - √2 ) / ( 3 - 2 )
= √3 - √2 ----( 2 )
√x + 1/√x = √3 + √2 + √3 - √2
= 2√3 ---( 3 )
Now
Tan theta = 1/2 ( √x + 1/√x )
= 1/2 ( 2√3 )
[ From ( 3 ) ]
Tan theta = √3
= Tan 60°
Therefore ,
Theta = 60°
Now ,
Sec² theta + sin² theta
= Sec² 60° + sin² 60°
= ( 1/2 )² + ( √3 / 2 )²
= 1/4 + 3/4
= ( 1 + 3 ) / 4
= 4/4
= 1
Given options are wrong.
I hope this helps you.
: )
x = 5 + 2√6
√x = √ ( 5 + 2√6 )
= √ [ ( √3 )² + (√2 )² + 2 × √3 × √2 ]
= √ ( √3 + √2 )²
= √3 + √2 ----( 1 )
1/√x = 1/( √3 + √2 )
= ( √3 - √2 )/ [ ( √3 + √2 ) (√3-√2 )]
= ( √3 - √2 ) / [ ( √3 )² - ( √2 )² ]
= ( √3 - √2 ) / ( 3 - 2 )
= √3 - √2 ----( 2 )
√x + 1/√x = √3 + √2 + √3 - √2
= 2√3 ---( 3 )
Now
Tan theta = 1/2 ( √x + 1/√x )
= 1/2 ( 2√3 )
[ From ( 3 ) ]
Tan theta = √3
= Tan 60°
Therefore ,
Theta = 60°
Now ,
Sec² theta + sin² theta
= Sec² 60° + sin² 60°
= ( 1/2 )² + ( √3 / 2 )²
= 1/4 + 3/4
= ( 1 + 3 ) / 4
= 4/4
= 1
Given options are wrong.
I hope this helps you.
: )
sravanthishravz:
hi.thank you very much
Similar questions