Math, asked by jevisindiagame2, 2 months ago

Can someone please explain me how do we solve this sum.​

Attachments:

Answers

Answered by Anonymous
5

Answer :-

Given :-

  • \sf x + \dfrac{1}{x} = 3

To Find :-

  • \sf x^2 + \dfrac{1}{x^2}

Solution :-

\implies\sf x + \dfrac{1}{x} = 3

Squaring on both side :-

\implies\sf (x + \dfrac{1}{x})^2 = 3^2

  • ( a + b )² = a² + b² + 2ab

\implies\sf x^2 + \dfrac{1}{x^2} + 2 \times \not x \times \dfrac{1}{\not x} = 9

\implies\sf x^2 + \dfrac{1}{x^2} + 2 = 9

\implies\sf x^2 + \dfrac{1}{x^2} = 9-2

\implies\sf x^2 + \dfrac{1}{x^2} = 7

\boxed{\bf Value \: of \: x^2 + \dfrac{1}{x^2} = 7}

Additional information :-

\boxed{\bigstar\:\:\textbf{\textsf{Algebraic\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})

Answered by tj9993397
0

We know that:

x \times \frac{1}{x}  = 3 \\

Squaring both sides

(x+1/x)2=9(x+1/x)2=9

x²+1/x²+2=9x²+1/x²+2=9

x²+1/x²=7x²+1/x²=7

Similar questions