Math, asked by Anonymous, 8 months ago

Can someone please help me out with this? Please don't spam.
I need step by step explanation.
I will mark the best answer brainliest and thank it.
Please this is a bit urgent.​

Attachments:

Answers

Answered by BrainlyPopularman
12

GIVEN :–

  \\ \bf \implies \int \dfrac{4 {x}^{3} +  \lambda {4}^{x} }{ {4}^{x} +  {x}^{4}}dx =  log | {4}^{x} +  {x}^{4}|\\

TO FIND :

• Value of   \bf \lambda = ?

SOLUTION :

  \\ \bf \implies \int \dfrac{4 {x}^{3} +  \lambda {4}^{x} }{ {4}^{x} +  {x}^{4}}dx =  log | {4}^{x} +  {x}^{4}|\\

• Now differentiate with respect to 'x' –

  \\ \bf \implies  \dfrac{4 {x}^{3} +  \lambda {4}^{x} }{ {4}^{x} +  {x}^{4}} = \dfrac{d}{dx} \{log | {4}^{x} +  {x}^{4}| \}\\

• Using identity –

  \\ \bf \to \dfrac{d \{log(x)\}}{dx}  =  \dfrac{1}{x} \\

  \\ \bf \to \dfrac{d( {a}^{x})}{dx}  =   {a}^{x}  ln(x) \\

  \\ \bf \to \dfrac{d( {x}^{n})}{dx}  =   \dfrac{ {x}^{n + 1} }{n + 1}  \\

• So that –

  \\ \bf \implies  \dfrac{4 {x}^{3} +  \lambda {4}^{x} }{ {4}^{x} +  {x}^{4}} = \dfrac{4 {x}^{3} +  {4}^{x} ln(4) }{{4}^{x} +  {x}^{4}}\\

• Now compare both sides –

  \\ \large\implies { \boxed{ \bf\lambda =  ln(4)}} \\

Similar questions