Math, asked by anushkaakaanu, 1 year ago

can someone please help me with part 3 in the picture?? It's urgent

Attachments:

Answers

Answered by Anonymous
5

Answer:

Hope this helps.

\displaystyle\frac{\tan\theta}{1-\cot\theta}+\frac{\cot\theta}{1-\tan\theta}\\ \\=\frac{\frac{\sin\theta}{\cos\theta}}{1-\frac{\cos\theta}{\sin\theta}}+\frac{\frac{\cos\theta}{\sin\theta}}{1-\frac{\sin\theta}{\cos\theta}}\\ \\=\frac{\sin^2\theta}{\cos\theta\sin\theta-\cos^2\theta}+\frac{\cos^2\theta}{\cos\theta\sin\theta-\sin^2\theta}\\ \\=\frac{\sin^2\theta}{\cos\theta(\sin\theta-\cos\theta)}-\frac{\cos^2\theta}{\sin\theta(\sin\theta-\cos\theta)}

\displaystyle=\frac{\sin^3\theta-\cos^3\theta}{\cos\theta\sin\theta(\sin\theta-\cos\theta)}\\ \\=\frac{(\sin\theta-\cos\theta)(\sin^2\theta+\cos\theta\sin\theta+\cos^2\theta)}{\cos\theta\sin\theta(\sin\theta-\cos\theta)}\\ \\=\frac{\cos\theta\sin\theta+1}{\cos\theta\sin\theta}\\ \\=1 + \frac{1}{\cos\theta\sin\theta}\\ \\=1 + \sec\theta\csc\theta


Anonymous: Hello. I hope you find this helpful. Plz mark this brainliest. And have a great day!!!
anushkaakaanu: I didn't understand the 4th last step
anushkaakaanu: How did u simplify sin ^3 - cos^ 3
Anonymous: I used the factorization x^3 - y^3 = (x-y) (x^2 + xy + y^2). :D
anushkaakaanu: Ty
Similar questions