Math, asked by ShreyaRanjitha, 2 months ago

Can someone please help me with this, thank you

Attachments:

Answers

Answered by assingh
22

Topic :-

Logarithm

Given :-

\sf{a=\left(\dfrac{1}{9}\right)^{-2\log_37}}

\sf {b=2^{-\log_{\frac{1}{2}}7}}

\sf{a=b^k}

To Find :-

Value of 'k'.

Solution :-

\sf{a=\left(\dfrac{1}{9}\right)^{-2\log_37}}

\sf{a=\left(\dfrac{1}{3^2}\right)^{-2\log_37}}

\sf{a=(3^{-2})^{-2\log_37}}

\sf {\left(\because \dfrac{1}{a^m}=a^{-m}\right)}

\sf{a=3^{(-2(-2))\log_37}}

\sf {\left(\because (a^m)^n=a^{mn}\right)}

\sf{a=3^{4\log_37}}

\sf{a=7^{4\log_33}}

\sf {\left(\because m^{r\log n}=n^{r\log m}\right)}

\boxed{\sf{a=7^4}}

\sf {(\because \log_mm=1)}

\sf {b=2^{-\log_{\frac{1}{2}}7}}

\sf {b=2^{-\log_{2^{-1}}7}}

\sf {b=2^{\frac{-1}{-1}\log_{2}7}}

\sf {\left(\because \log_{p^q}r=\dfrac{1}{q}\log_{p}r\right)}

\sf {b=2^{\log_{2}7}}

\sf {b=7^{\log_{2}2}}

\sf {\left(\because m^{\log n}=n^{\log m}\right)}

\sf {b=7^1}

\boxed{\sf{b=7}}

\sf {(\because \log_mm=1)}

Now,

\sf{a=b^k}

Substituting values,

\sf{7^4=7^k}

Equating powers,

k = 4

Answer :-

Value of k = 4, hence option (A) is correct option.


Asterinn: Pantomath :kul:
Similar questions