Math, asked by UchechiF1, 1 year ago

Can someone please solve this and show the workings :
In an ap, the sum of the first 10 terms is 400 and the sum of the
Next 10 terms is 1000, find the common difference and the first term

Answers

Answered by Anonymous
0

Answer:

Sn = n/2[ 2a + (n-1)d ]

NOW,   20/2 [2a + (20-1)] = 400

 10[ 2a + 19d ]  = 400

     2a + 19d  =  40         ---------   (i)

similarly,   For 40 terms 

     40/2[ 2a+39d]  = 1600

       2a + 39d = 80           --------- (ii)

now on subtracting  (i) & (ii)

we get,    20d = 40          

                d =   2

 and therefore,    2a+ 19*2 = 40

                              a = 1

hence sum of 1st ten terms is

       10/2[2*1 + (10-1)2]

        5[ 2 + 18 ] = 20*5

          =  100

Answered by Abhiscs606624
0

Answer:

Given, in an AP the sum of the first 10 terms is 400 and sum of the next 10 terms is 1000

Step-by-step explanation:

S10=400                                    ;         S20=400+1000=1400

Sn=n/2[2a+(n-1)d]                      ;         Sn=n/2[2a+(n-1)d]

400=10/2[2a+(10-1)d]                ;         1400=20/2[2a+(20-1)d]

400=5[2a+9d]                           ;          1400=10[2a+19d]

400/5=2a 9d                            ;         1400/10=2a+19d

80=2a+9d                                 ;         140=2a+19d

2a+9d=80-------(1)                     ;        2a+19d=140--------(2)

solving (1) and (2)

subtracting (1) and (2)

  2a+19d=140

  2a+9d=80

 0a+10d=60

    ⇒ 10d=60

    ⇒  d=60/10

    ⇒  d=6--------(3)

sub. d=6 in eq. (1)

2a+9d=80

2a+9(6)=80

2a+54=80

2a=80-54

2a=26

a=26/2

a=13

Similar questions