Math, asked by dreamymeira, 19 days ago

can someone please solve with explanation​

Attachments:

Answers

Answered by sayantan735
1

Answer:

1》x = 7

2》1/ab

3》 28

Step-by-step explanation:

1》

 { \sqrt{3} }^{(x - 3)}  =  { \sqrt[4]{3} }^{(x + 1)}

Equalizing the bases —

 {3}^{( \frac{x - 3}{2}) }  =  {3}^{ (\frac{x + 1}{4} )}

Since bases are equal, exponents must be equal too —

 \frac{x - 3}{2}  =  \frac{x + 1}{4}

Cross multiplying —

4x - 12 = 2x + 2

Simplifying —

2x = 14 \:  \:  \:  =  > \:  \:  x = 7 \:  \: (ans)

2》

 {(a + b)}^{ - 1}  \times ( {a}^{ - 1}  +  {b}^{ - 1} )

Converting into fractions —

 \frac{1}{(a + b)}  \times ( \frac{1}{a} +  \frac{1}{b}  )

Simplifying —

 \frac{1}{(a + b)}  \times  \frac{(a + b)}{ab}  \:  \:  \:  =   \: \frac{1}{ab}  \:  \: (ans)

3》

 \frac{3 \times  {27}^{(n + 1)} \:  \:  + \:  \:   9 \times  {3}^{(3n  -  1)} }{8 \times  {3}^{3n}  \:  \:  -  \:  \: 5 \times  {27}^{n} }

Equalizing the bases —

 \frac{3 \times  {3}^{(3n + 3)} \:  \:   +  \:  \:  {3}^{2} \times  {3}^{(3n - 1)}  }{8 \times  {3}^{3n}   \:  \:  -  \:  \: 5 \times  {3}^{3n} }

Simplifying —

 \frac{ {3}^{(3n + 4)}  +  {3}^{(3n + 1)} }{ {3}^{3n} (8 - 5)}

Taking common terms —

 \frac{ {3}^{(3n + 1)}( {3}^{3}  + 1) }{ {3}^{(3n + 1)} }

Cancelling —

( {3}^{3}  + 1) =   (27 + 1) = 28 \:  \: (ans)

Hope this helps you :)

Similar questions