Math, asked by lucky2004, 8 months ago

Can someone pls help..... (Class XI Trigonometry)

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given,

 \tan^{2} ( \frac{\pi}{4}  +  \frac{ \theta}{2} )  =  \frac{a}{b}

 =  >  \frac{2 \sin^{2} ( \frac{\pi}{4} +  \frac{\theta}{2}  ) }{ 2\cos^{2} ( \frac{\pi}{4}  +  \frac{\theta}{2} ) }  =  \frac{a}{b}

 =  > \frac{ 1 -  \cos2( \frac{\pi}{4} +  \frac{ \theta }{2}  ) }{1 +  \cos2( \frac{\pi}{4}  +  \frac{\theta}{2} ) }  =  \frac{a}{b}

 =  >  \frac{1 -  \cos( \frac{\pi}{2}  + \theta) }{1 +  \cos( \frac{\pi}{2}  + \theta)}  =  \frac{a}{b}

  =  >  \frac{1 +  \sin( \theta ) }{1 -  \sin( \theta) }  =  \frac{a}{b}

Now, using componendo and dividendo,

 \frac{1 +  \sin( \theta) + 1 -  \sin( \theta)  }{1 +  \sin( \theta)  - 1 +  \sin( \theta)} =  \frac{a + b}{a - b}

 =  >  \frac{2}{2 \sin( \theta ) }  =  \frac{a + b}{a - b}

 =  >  \frac{1}{ \sin( \theta ) }  =  \frac{a + b}{a - b}

 =  >  \sin( \theta)  =  \frac{a - b}{a + b}

Similar questions